首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the application of wavefront sensing to particle image velocimetry for three-component (3C), three-dimensional (3D) flow measurement from a single view. The technique is based upon measuring the wavefront scattered by a tracer particle and from that wavefront the 3D tracer location can be determined. Hence, from a temporally resolved sequence of 3D particle locations the velocity vector field is obtained. Two approaches to capture the data required to measure the wavefronts are described: multi-planar imaging using a distorted diffraction grating and an anamorphic technique. Both techniques are optically efficient, robust and compatible with coherent and incoherent scattering from flow tracers. The depth (range) resolution and repeatability have been quantified experimentally using a single mode fiber source representing a tracer particle. The anamorphic approach is shown to have the greatest measurement range and hence was selected for the first proof of principle experiments using this technique for 3D particle imaging velocimetry (PIV) on a sparsely seeded gas phase flow.  相似文献   

2.
In this paper, we report on an experimental technique for the simultaneous measurement of temperature and three components of velocity in a three-dimensional thermal flow using scanning liquid-crystal thermometry and stereo velocimetry. The temperature is measured by the color image analysis of the liquid-crystal particles suspended in a fluid, while the three velocity components are measured by stereo particle image velocimetry (stereo PIV) with the aid of tracer particles. The measurement is carried out by scanning the light-sheet plane while capturing the sequential color images of the liquid crystals and tracer particles. This measurement allows the reconstruction of the three-dimensional distribution of temperature and full velocity field simultaneously. The present experimental technique is applied to the horizontal fluid layer of a turbulent Rayleigh-Bérnard convection and the three-dimensional structures of thermal plumes are evaluated. The experimental results indicate that the structures of plumes are often correlated with the vertical velocity of the fluid, but they behave randomly in space, influenced by the large-scale turbulence evident in the middle of the fluid layer.  相似文献   

3.
 The technical basis and system set-up of a dual-plane stereoscopic particle image velocimetry (PIV) system, which can obtain the flow velocity (all three components) fields at two spatially separated planes simultaneously, is summarized. The simultaneous measurements were achieved by using two sets of double-pulsed Nd:Yag lasers with additional optics to illuminate the objective fluid flow with two orthogonally linearly polarized laser sheets at two spatially separated planes, as proposed by Kaehler and Kompenhans in 1999. The light scattered by the tracer particles illuminated by laser sheets with orthogonal linear polarization were separated by using polarizing beam-splitter cubes, then recorded by high-resolution CCD cameras. A three-dimensional in-situ calibration procedure was used to determine the relationships between the 2-D image planes and three-dimensional object fields for both position mapping and velocity three-component reconstruction. Unlike conventional two-component PIV systems or single-plane stereoscopic PIV systems, which can only get one-component of vorticity vectors, the present dual-plane stereoscopic PIV system can provide all the three components of the vorticity vectors and various auto-correlation and cross-correlation coefficients of flow variables instantaneously and simultaneously. The present dual-plane stereoscopic PIV system was applied to measure an air jet mixing flow exhausted from a lobed nozzle. Various vortex structures in the lobed jet mixing flow were revealed quantitatively and instantaneously. In order to evaluate the measurement accuracy of the present dual-plane stereoscopic PIV system, the measurement results were compared with the simultaneous measurement results of a laser Doppler velocimetry (LDV) system. It was found that both the instantaneous data and ensemble-averaged values of the stereoscopic PIV measurement results and the LDV measurement results agree well. For the ensemble-averaged values of the out-of-plane velocity component at comparison points, the differences between the stereoscopic PIV and LDV measurement results were found to be less than 2%. Received: 18 April 2000/Accepted: 2 February 2001  相似文献   

4.
A method is proposed that allows three-dimensional (3D) two-component measurements to be made by means of particle image velocimetry (PIV) in any volume illuminated over a finite thickness. The method is based on decomposing the cross-correlation function into various contributions at different depths. Because the technique is based on 3D decomposition of the correlation function and not reconstruction of particle images, there is no limit to particle seeding density as experienced by 3D particle tracking algorithms such as defocusing PIV and tomographic PIV. Correlations from different depths are differentiated by the variation in point spread function of the lens used to image the measurement volume over that range of depths. A number of examples are demonstrated by use of synthetic images which simulate micro-PIV (μPIV) experiments. These examples vary from the trivial case of Couette flow (linear variation of one velocity component over depth) to a general case where both velocity components vary by different complex functions over the depth. A final validation—the measurement of a parabolic velocity profile over the depth of a microchannel flow—is presented. The same method could also be applied using a thick light sheet in macro-scale PIV and in a stereo configuration for 3D three-component PIV.  相似文献   

5.
Three-dimensional surface illumination using curved laser-sheet techniques is introduced for optical flow measurements in conformal curved surfaces. The illumination method is applicable to many different optical-based flow measurement techniques, with this paper focusing on application to flow visualization and particle image velocimetry. A brief discussion and example of curved laser-sheet generation is given followed by an example of the technique applied to PIV of low Reynolds number transitional flow around a low-pressure turbine blade.  相似文献   

6.
黄湛  张淼  程攀  王宏伟 《实验力学》2016,(5):673-682
光流测量技术作为一种新的空气动力学实验技术,以其像素级分辨率的矢量场测量优势获得广泛的应用。光流测量技术使用光流约束方程,配合平滑限定条件,可以进行速度场测量,获得高分辨率的全局矢量场。本文首先通过研究积分最小化光流测速理论和算法,采用C++编写光流速度测量程序;然后通过三种典型的人工位移图像对光流计算程序进行了验证,并将结果和标准位移分布进行比对分析,以指导如何在实际应用中获得高精度光流速度场;最后进行小型风洞后向台阶实验,利用高速相机拍摄示踪粒子图像,使用光流计算程序获得速度矢量场,同采用互相关算法的粒子图像测速计算结果相比较,体现出光流计算方法像素级分辨率的矢量场测量优势。  相似文献   

7.
Particle image velocimetry (PIV) has been used in order to measure the three mean components and turbulence intensities of the velocity vector in a swirling decaying flow induced by a tangential inlet in an annulus. This kind of flow motion is found to be very complex, exhibiting three-dimensional and non-axisymmetric characteristics coupled with a free decay of the swirling intensity along the flow path, thereby making it difficult to study. A method allowing the measurement of the three components of the velocity flow-field with a standard PIV system with two-dimensional acquisitions, is presented. The evolution of each velocity component between the inlet and the outlet of the annulus is obtained. Furthermore, the PIV technique is extended to the measurement of turbulent characteristics such as turbulent intensities and dimensionless turbulent energy. The main characteristics of the swirling flow are discussed and the swirl number is estimated as a function of the axial distance from the tangential inlet. Received: 6 July 1998/Accepted: 20 March 1999  相似文献   

8.
An experiment is conducted in a four-roll mill to verify a novel particle image velocimetry (PIV) recording evaluation method that combines the advantages of central difference interrogation and an image correction technique. Simulations and experiments in the four-roll mill geometry demonstrate that the central difference image correction method described in this paper can not only avoid the bias error resulting from the curvature and high-velocity-gradient flow but also effectively reduce the random error resulting from particle image distortion. Two image correction schemes and two base algorithms are discussed. A four-point image correction scheme is suggested on the basis of the traditional correlation-based interrogation algorithm to enable a fast, high-accuracy evaluation of PIV recordings in complex flows. In addition, the PIV experiment accurately determines the velocity field in the four-roll mill and confirms the linear distributions of the velocity components and the roller speed.  相似文献   

9.
The combination of ultrasound echo images with digital particle image velocimetry (DPIV) methods has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window offsetting were used to increase the spatial resolution of the velocity measurement to a maximum of 1.8 mm×3.1 mm. Velocity validation tests in fully developed laminar pipe flow showed good agreement with both optical PIV measurements and the expected parabolic profile. A dynamic range of 1 to 60 cm/s has been obtained to date.  相似文献   

10.
Tomographic particle image velocimetry (PIV) is a recently developed method to measure three components of velocity within a volumetric space. We present a visual hull technique that automates identification and masking of discrete objects within the measurement volume, and we apply existing tomographic PIV reconstruction software to measure the velocity surrounding the objects. The technique is demonstrated by considering flow around falling bodies of different shape with Reynolds number?~1,000. Acquired image sets are processed using separate routines to reconstruct both the volumetric mask around the object and the surrounding tracer particles. After particle reconstruction, the reconstructed object mask is used to remove any ghost particles that otherwise appear within the object volume. Velocity vectors corresponding with fluid motion can then be determined up to the boundary of the visual hull without being contaminated or affected by the neighboring object velocity. Although the visual hull method is not meant for precise tracking of objects, the reconstructed object volumes nevertheless can be used to estimate the object location and orientation at each time step.  相似文献   

11.
Measuring the turbulent kinetic energy dissipation rate in an enclosed turbulence chamber that produces zero-mean flow is an experimental challenge. Traditional single-point dissipation rate measurement techniques are not applicable to flows with zero-mean velocity. Particle image velocimetry (PIV) affords calculation of the spatial derivative as well as the use of multi-point statistics to determine the dissipation rate. However, there is no consensus in the literature as to the best method to obtain dissipation rates from PIV measurements in such flows. We apply PIV in an enclosed zero-mean turbulent flow chamber and investigate five methods for dissipation rate estimation. We examine the influence of the PIV interrogation cell size on the performance of different dissipation rate estimation methods and evaluate correction factors that account for errors related to measurement uncertainty, finite spatial resolution, and low Reynolds number effects. We find the Re λ corrected, second-order, longitudinal velocity structure function method to be the most robust method to estimate the dissipation rate in our zero-mean, gaseous flow system.  相似文献   

12.
An experiment on bubble motion in a simple shear layer was performed in order to obtain fundamental knowledge of the force on the bubble and its lateral motion induced by the surrounding flow field. We explored the flow structure in the vicinity of the bubble in one plane and its deformation in two planes by particle image velocimetry (PIV)–laser-induced fluorescence (LIF) and a projection technique for two perpendicular planes, respectively. For our experiment, we chose a single air bubble with an equivalent bubble diameter D eq of 2~6 mm in a vertical shear flow. Velocity measurements were made using a digital high-speed CCD camera for PIV with fluorescent tracer particles. The second and third CCD cameras were used to detect the bubbles shape and motion via backlighting from an array of infrared LEDs. We quantitatively studied the three-dimensional wake structure from measurements of the two-dimensional vortex structure and approximated three-dimensional shape deformation arranged from two perpendicular bubble images.  相似文献   

13.
 In this paper digital processing techniques for PIV (Partical Image Velocimetry) using double-exposed particle images have been studied. It has been found that a pattern matching technique is significantly superior to the traditional autocorrelation method in the case that a large particle displacement between the double exposures is present on the image. In PIV using double-exposed images, the image shifting technique is usually used to solve the directional ambiguity problem. The performance of PIV using autocorrelation technique is dependent on the flow speed and the amount of image shift applied. This dependence, for example, causes a difficulty of autocorrelation in flows close to a solid boundary. The present study shows that a pattern matching technique eliminates such a difficulty. At the same signal-to-noise ratio, the pattern matching techndique has a better spatial resolution than that of autocorrelation. In concert with the pattern matching technique, PID (Particle Image Distortion) can be applied to double-exposed images, further improving the reliability and accuracy of velocity estimates of PIV in the presence of large velocity gradients. Generally speaking, PIP-matching and PID extend the validity of PIV using double-exposed images. The total processing time required by the PIV using the pattern matching technique and one PID iteration is of the same order as that required by the PIV using autocorrelation. Received: 7 July 1995 / Accepted: 11 September 1997  相似文献   

14.
PIV measurements near a wall are generally difficult due to low seeding density, low velocity, high velocity gradient, and strong reflections. Such problems are often compounded by curved boundaries, which are commonly found in many industrial and medical applications. To systematically solve these problems, this paper presents two novel techniques for near-wall measurement, together named Interfacial PIV, which extracts both wall-shear gradient and near-wall tangential velocity profiles at one-pixel resolution. To deal with curved walls, image strips at a curved wall are stretched into rectangles by means of conformal transformation. To extract the maximal spatial information on the near-wall tangential velocity field, a novel 1D correlation function is performed on each horizontal pixel line of the transformed image template to form a “correlation stack”. This 1D correlation function requires that the wall-normal displacement component of the particles be smaller than the particle image diameter in order to produce a correlation signal. Within the image regions satisfying this condition, the correlation function yields peaks that form a tangential velocity profile. To determine this profile robustly, we propose to integrate gradients of tangential velocity outward from the wall, wherein the gradient at each wall-normal position is measured by fitting a straight line to the correlation peaks. The capability of Interfacial PIV was validated against Particle Image Distortion using synthetic image pairs generated from a DNS velocity field over a sinusoidal bed. Different velocity measurement schemes performed on the same correlation stacks were also demonstrated. The results suggest that Interfacial PIV using line fitting and gradient integration provides the best accuracy of all cases in the measurements of velocity gradient and velocity profile near wall surfaces.  相似文献   

15.
The feasibility of simultaneous measurements of the instantaneous velocity fields of gaseous and liquid phase is demonstrated in a laminar, unsteady two-phase flow. Thus, the instantaneous relative velocity field can be measured in such media. This is achieved by combining Particle Image Velocimetry (PIV) and a gas-phase velocimetry technique, which is based on laser-induced fluorescence (LIF) from a gaseous tracer. The wavelength shift of LIF is exploited to separate it from Mie scattering from the liquid phase. The new technique and the PIV measurement system work independently in this approach. Thus, the measurement accuracy and precision of the new technique can be validated by comparing it to the PIV results in regions of the flow field where the relative velocity vanishes. Received: 18 October 1998/Accepted: 16 October 1999  相似文献   

16.
A turbulent mixing layer consists of two different flow types, i.e. shear layer (shear-flow turbulence) and free stream regions (nearly homogeneous turbulence). The inherent non-uniform seeding tracer distributions observed around the interfaces between the shear layer and two free stream regions usually lead to a difficulty in particle image velocimetry (PIV) measurements. A parametric study on the application of PIV to the measurement of velocity field in a planar mixing layer is made by means of six factors, including interrogation window size, aspect ratio of interrogation window, interrogation window offset, threshold of data validation, sharpening spatial filters (Prewitt and Sobel masks), and smoothing spatial filter (median mask). The objective of this study is to obtain accurate turbulent measurements in both mean and fluctuating velocities using PIV under an appropriate parametric setting. The optimal levels, which are trade-off in between the accuracy and fine spatial resolution of velocity field measurements, are determined with the aid of the Taguchi method. It is shown that the PIV measurements made with this optimal set of parameters are in good agreement with the measurements made by a two-component hot-wire anemometer. Case independency of the proposed optimal set of parameters on the flow condition of the mixing layer is validated through the applications to two additional tests under the different experimental conditions in changing solely either velocity ratio of high-speed to low-speed free stream velocities or Reynolds number.  相似文献   

17.
The turbulence structure of a horizontal channel flow with microbubbles is experimentally investigated using combined particle image velocimetry (PIV) in order to clarify the mechanism of drag reduction caused by microbubbles. A new system which simultaneously measures the liquid phase and the dispersed bubbles is proposed, based on a combination of particle tracking velocimetry (PTV), laser-induced fluorescence (LIF) and the shadow image technique (SIT). To accurately obtain the velocity of the liquid phase, tracer particles which overlap with the bubble shadow images are almost entirely eliminated in the post-processing. Finally, the turbulence characteristics of the flow field are presented, including measurements for both phases, and the bubble effect on the turbulence is quantified.  相似文献   

18.
An automated technique is described for reconstructing three-dimensional trajectories of tracer particles in curved circular ducts. Individual particles are tracked in real time by a rotating camera under computer control. A digital imaging system enables the computer to locate the particle, adjust the speed of rotation, and store position and calibration data. By viewing the tube from approximately orthogonal directions, three-dimensional information on the position of the particle is obtained. Its precise location is calculated by tracing rays from the camera to the interior of the tube. This technique yields detailed three-dimensional position and velocity data along a trajectory.  相似文献   

19.
We analyzed the non-Newtonian flow characteristics of blood moving in a circular tube flow using an X-ray PIV method and compared the experimental results with hemodynamic models. The X-ray PIV method was improved for measuring quantitative velocity fields of blood flows using a coherent synchrotron X-ray. Without using any contrast media, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells. The enhanced X-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit in detail. The quantitative velocity fields of blood flows inside opaque conduits were obtained by applying a two-frame PIV algorithm to the X-ray images of the blood flows. The measured velocity data show typical features of blood flow such as the yield stress and shear-thinning effects.  相似文献   

20.
In the present work, an experimental study of bubbly two-phase flow in a rectangular bubble column was performed using two ultrasonic array sensors, which can measure the instantaneous velocity of gas bubbles on multiple measurement lines. After the sound pressure distribution of sensors had been evaluated with a needle hydrophone technique, the array sensors were applied to two-phase bubble column. To assess the accuracy of the measurement system with array sensors for one and two-dimensional velocity, a simultaneous measurement was performed with an optical measurement technique called particle image velocimetry(PIV). Experimental results showed that accuracy of the measurement system with array sensors is under 10% for one-dimensional velocity profile measurement compared with PIV technique. The accuracy of the system was estimated to be under 20% along the mean flow direction in the case of two-dimensional vector mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号