首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 968 毫秒
1.
以数值计算为手段,分析了带涡襟翼的翼型的流场特性,分别对迎角及扰流板偏角对翼型气动性能的影响做了分析。结果表明,在小迎角来流情况下,保持迎角不变,涡襟翼偏转角度越大,升力越小,阻力越大,呈现较好的线性关系。在大迎角情况下,绕翼型的流动发生分离,通过适当控制涡襟翼的偏转角度,能够有效的改善翼型的失速特性,从而达到流动控制的目的,迎角越大,涡襟翼所需偏转的角度越大。  相似文献   

2.
风力机翼型动态失速等离子体流动控制数值研究   总被引:3,自引:3,他引:0  
针对动态失速引起的风力机翼型气动性能恶化的问题,本文基于动网格和滑移网格技术, 开展了大涡模拟数值计算研究,探索了非定常脉冲等离子体的动态流动控制机理. 结果表明,等离子体气动激励能够有效控制翼型动态失速, 改善平均和瞬态气动力,减小力矩负峰值和迟滞环面积. 压力分布在等离子体施加范围内出现了负压"凸起",上翼面吸力峰值明显增大.脉冲频率和占空比这两个非定常控制参数对流动控制影响显著,无因次脉冲频率为1.5时等离子体控制效果较好,占空比为0.8时即可接近连续工作模式下的气动收益. 翼型深失速状态,等离子体促使流动分离位置明显向后缘移动, 抵抗了大尺度动态失速涡的发生,分离涡结构破碎耗散、重新附着, 涡流影响范围减小; 浅失速状态,等离子体激励具有较强的剪切层操纵能力, 诱导了翼型边界层提前转捩,促进了与主流的动量掺混. 等离子体气动激励诱导出前缘附近贴体翼面"涡簇",起到了虚拟气动外形的作用.不同尺度、频域的动态涡结构与等离子体气动激励的非线性、强耦合作用导致了气动力/力矩的谐波振荡.   相似文献   

3.
针对动态失速引起的风力机翼型气动性能恶化的问题,本文基于动网格和滑移网格技术, 开展了大涡模拟数值计算研究,探索了非定常脉冲等离子体的动态流动控制机理. 结果表明,等离子体气动激励能够有效控制翼型动态失速, 改善平均和瞬态气动力,减小力矩负峰值和迟滞环面积. 压力分布在等离子体施加范围内出现了负压"凸起",上翼面吸力峰值明显增大.脉冲频率和占空比这两个非定常控制参数对流动控制影响显著,无因次脉冲频率为1.5时等离子体控制效果较好,占空比为0.8时即可接近连续工作模式下的气动收益. 翼型深失速状态,等离子体促使流动分离位置明显向后缘移动, 抵抗了大尺度动态失速涡的发生,分离涡结构破碎耗散、重新附着, 涡流影响范围减小; 浅失速状态,等离子体激励具有较强的剪切层操纵能力, 诱导了翼型边界层提前转捩,促进了与主流的动量掺混. 等离子体气动激励诱导出前缘附近贴体翼面"涡簇",起到了虚拟气动外形的作用.不同尺度、频域的动态涡结构与等离子体气动激励的非线性、强耦合作用导致了气动力/力矩的谐波振荡.  相似文献   

4.
前缘后掠角为65°和70°的两个平板三角翼作俯仰振荡运动,前缘涡破碎的流动显示实验研究在南京航空航天大学1米低速风洞中进行。俯仰振荡运动的攻角范围为0°~60°,折合频率为0.03和0.06。采用四氯化钛发烟技术显示前缘涡核轨迹及涡破碎位置。流动显示图形采用相位锁定照相记录。实验结果表明大幅俯仰振荡三角翼的动态涡破碎的弦向位置明显滞后于相应攻角下的静态位置,此滞后量随折合频率增加而增大。本文也根据测得的涡破碎位置随攻角变化曲线讨论了涡破碎位置的传播速度  相似文献   

5.
横向振动方柱波动升力实验研究   总被引:3,自引:0,他引:3  
本文对均匀流中静止方柱和横向强迫振动的方柱进行了实验研究。实验雷诺数范围为 3×10~3~10~4,振幅与柱截面宽度之比 A/D 达到0.7,实验折合速度范围为 4.5≤V_r≤12。文章重点研究了较高振幅振动柱的锁定现象、波动升力与柱位移之间的相位变化,讨论了方柱涡激振荡、驰振和气动稳定性问题。对流场进行的流动显示,清晰地显示出锁定区涡脱落过程、近尾迹流场随振动频率和振幅的演化规律,从而对振动柱波动升力与相位变化的物理机制获得进一步认识。  相似文献   

6.
孙茂  王家禄  连淇祥 《力学学报》1993,25(5):628-631
在尾缘处置氢气泡铂丝,观察了上仰翼型自尾缘流入尾迹的涡层。基于尾涡层及(以往)上翼面分离涡的观察,用涡动力学理论,探讨了动态失速的机理,并解释了新的失速现象。  相似文献   

7.
应用PIV技术测试涡旋波流场   总被引:1,自引:0,他引:1  
涡旋波流动作为一种特殊的流动现象,可以使流体在相对较宽的槽道中产生较强的波动和对流混合,从而在小Re数条件下起到强化传质的效果。本文利用PIV流场显示技术,对振荡流在非对称槽道中所形成的涡旋波的产生机理和发展规律进行了实验研究和定量分析,测得了涡旋波流场的速度矢量图,阐明了涡旋波流场周期性变化的特点。分析了Re数和St数对涡旋波流动的影响,并得出了旋涡涡心位置以及涡心处涡量的动态变化规律。  相似文献   

8.
模型昆虫翼作非定常i运动时的气动力特性   总被引:9,自引:0,他引:9  
兰世隆  孙茂 《力学学报》2001,33(2):173-182
基于Navier-Stokes方程的数值解,研究了一模型昆虫翼在小雷诺数(Re=100)下作非定常运动时的气动力特性.这些运动包括翼启动后的常速转动,快速加、减速转动,常速转动中快速上仰(模拟昆虫翼的上挥或下拍、翻转等运动).有如下结果在小雷诺数下,模型昆虫翼以大攻角(α=35°)作常速转动运动时,由于失速涡不脱落,可产生较大的升力系数.其机理是翼转动时,翼尖附近(该处线速度大)上翼面压强比翼根附近(该处线速度小)的小得多,因而存在展向压强梯度,同时存在着沿展向的离心力,此展向压强梯度和离心力导致的展向流动在失速涡的轴向方向,其可避免失速涡脱落.模型昆虫翼在快速加、减速转动和快速上仰运动中,虽然雷诺数小,但由于在短时间内产生了大涡量,也可产生十分大的气动力,例如在快速上仰运动中,升力系数可大于10.  相似文献   

9.
发展了一种基于鲁棒Riemann求解器和运动重叠网格技术计算直升机悬停旋翼流场的方法。基于惯性坐标系,悬停旋翼流场是非定常流场,控制方程为可压缩Reynolds平均Navier-Stoke方程,其对流项采用Roe近似Reimann求解器离散,使用改进的五阶加权基本无振荡格式进行高阶重构,非定常时间推进采用含牛顿型LUSGS子迭代的全隐式双时间步方法。为实施旋转运动和便于捕捉尾迹,计算采用运动重叠网格技术。计算得到的桨叶表面压力分布及桨尖涡涡核位置都与实验结果吻合较好。数值结果表明:所发展方法对桨尖涡具有较高的分辨率,对激波具有较好的捕捉能力,该方法可进一步推广到前飞旋翼粘性绕流的计算。  相似文献   

10.
姜欢  段俐  康琦 《力学学报》2015,47(3):422-429
主要研究矩形液池热毛细对流的分岔转捩. 通过测量流体内部温度振荡情况, 详细研究了热毛细对流的转捩过程和转捩途径. 实验发现, 矩形液池热毛细对流的转捩过程依次经历了定常、规则振荡、不规则振荡的阶段. 对于不同普朗特数的硅油在不同长高比情况下, 通向混沌的途径不同. 在转捩过程中, 随着温差的增加, 普朗特数在16 (1cSt) 以下和普朗特数为25 (1.5cSt)、长高比为26 的硅油热毛细对流主要以准周期分岔的转捩方式为主;而普朗特数为25 以上的则以倍周期分岔的转捩方式为主;两种分岔有时还会伴随有切分岔形式的出现.实验中还观察到了表面波动和对流涡胞振荡等现象.   相似文献   

11.
The flow structure around an NACA 0012 aerofoil oscillating in pitch around the quarter-chord is numerically investigated by solving the two-dimensional compressible N–S equations using a special matrix-splitting scheme. This scheme is of second-order accuracy in time and space and is computationally more efficient than the conventional flux-splitting scheme. A ‘rigid’ C-grid with 149 × 51 points is used for the computation of unsteady flow. The freestream Mach number varies from 0.2 to 06 and the Reynolds number from 5000 to 20,000. The reduced frequency equals 0.25–0.5. The basic flow structure of dynamic stall is described and the Reynolds number effect on dynamic stall is briefly discussed. The influence of the compressibility on dynamic stall is analysed in detail. Numerical results show that there is a significant influence of the compressibility on the formation and convection of the dynamic stall vortex. There is a certain influence of the Reynolds number on the flow structure. The average convection velocity of the dynamic stall vortex is approximately 0.348 times the freestream velocity.  相似文献   

12.
Dynamic stall on a pitching OA209 airfoil in a wind tunnel is investigated at Mach 0.3 and 0.5 using high-speed pressure-sensitive paint (PSP) and pressure measurements. At Mach 0.3, the dynamic stall vortex was observed to propagate faster at the airfoil midline than at the wind-tunnel wall, resulting in a “bowed” vortex shape. At Mach 0.5, shock-induced stall was observed, with initial separation under the shock foot and subsequent expansion of the separated region upstream, downstream and along the breadth of the airfoil. No dynamic stall vortex could be observed at Mach 0.5. The investigation of flow control by blowing showed the potential advantages of PSP over pressure transducers for a complex three-dimensional flow.  相似文献   

13.
The onset of dynamic stall revisited   总被引:1,自引:0,他引:1  
Dynamic stall on a helicopter rotor blade comprises a series of complex aerodynamic phenomena in response to the unsteady change of the blade’s angle of attack. It is accompanied by a lift overshoot and delayed massive flow separation with respect to static stall. The classical hallmark of the dynamic stall phenomenon is the dynamic stall vortex. The flow over an oscillating OA209 airfoil under dynamic stall conditions was investigated by means of unsteady surface pressure measurements and time-resolved particle image velocimetry. The characteristic features of the unsteady flow field were identified and analysed utilising different coherent structure identification methods. An Eulerian and a Lagrangian procedure were adopted to locate the axes of vortices and the edges of Lagrangian coherent structures, respectively; a proper orthogonal decomposition of the velocity field revealed the energetically dominant coherent flow patterns and their temporal evolution. Based on the complementary information obtained by these methods the dynamics and interaction of vortical structures were analysed within a single dynamic stall life cycle leading to a classification of the unsteady flow development into five successive stages: the attached flow stage; the stall development stage; stall onset; the stalled stage; and flow reattachment. The onset of dynamic stall was specified here based on a characteristic mode of the proper orthogonal decomposition of the velocity field. Variations in the flow field topology that accompany the stall onset were verified by the Lagrangian coherent structure analysis. The instantaneous effective unsteadiness was defined as a single representative parameter to describe the influence of the motion parameters. Dynamic stall onset was found to be promoted by increasing unsteadiness. The mechanism that results in the detachment of the dynamic stall vortex from the airfoil was identified as vortex-induced separation caused by strong viscous interactions. Finally, a revised criterion to discern between light and deep dynamic stall was formulated.  相似文献   

14.
The impact of 12 spoiler–tab configurations, of different heights and widths, on the tip vortex generated by an oscillating NACA 0015 wing was investigated experimentally. For an oscillating wing equipped with a spoiler, the peak tangential velocity and core and total circulation were greatly reduced compared to a tab, regardless of its width, while the core radius remained largely unaffected with its center displaced vertically above the baseline wing. The most noticeable impact of a spoiler with a reduced height was its potential in alleviating the blade–vortex interaction (BVI) strength. Meanwhile, the largest favorable impact on the critical vortex flow parameters was achieved via a 25%-span spoiler–tab combination with a height of 5 and 2.5% chord, respectively. A contrary effect on the BVI suppression, especially during pitch-up, was, however, observed. The impact on the BVI can be improved by reducing the height of the spoiler at the expense of unfavorable change in the vortex strength and displacement.  相似文献   

15.
This study revealed the three-dimensional instantaneous topologies of the large-scale turbulence structures in the separated flow on the suction surface of wind turbine’s blade during stall delay. These structures are the major contributors to the first two POD (proper orthogonal decomposition) modes. The two kinds of instantaneous flow structures as major contributors to the first POD mode are: (1) extended regions of downwash flow with an upstream upward flow beside it and a compact vortex pair closer to the blade’s leading edge; (2) a large-scale clockwise vortex with strong induced flows. The two kinds of flow structures contributing significantly to the second POD mode are: (1) large counter-rotating vortices inducing strong upward velocities and a series of small vortices; (2) strong downwash flow coming from the leading-edge shear layer with a large and strong vortex on the left side and small vortices upstream. The statistical impacts of these large-scale and energetic structures on the turbulence have also been studied. It was observed that when these turbulence structures were removed from the flow, the peak values of some statistics were significantly reduced.  相似文献   

16.
针对所设计的三角形涡流发生器开展用于翼型失速流动控制的风洞实验研究,重点讨论涡流发生器几何参数、方向角、安装位置及实验雷诺数等因素对翼型失速流动控制的影响。实验结果表明:涡流发生器作用下,在干净翼失速迎角后能够形成一个升力几乎不随迎角变化的相对稳定的高升力状态,抑制了失速流动的发生,与此同时阻力大幅下降;本文所设计的涡流发生器方向角过大时会削弱翼型失速流动控制的效果;同一涡流发生器作用下雷诺数过大其失速流动控制效果会急剧恶化,第一种涡流发生器控制翼型失速的雷诺数有效范围略宽于第二种涡流发生器。  相似文献   

17.
Numerical simulations have been used to analyze the effect that vortices, shed from one flapping foil, have on the thrust of another flapping foil placed directly downstream. The simulations attempt to model the dorsal–tail fin interaction observed in a swimming bluegill sunfish. The simulations have been carried out using a Cartesian grid method that allows us to simulate flows with complex moving boundaries on stationary Cartesian grids. The simulations indicate that vortex shedding from the upstream (dorsal) fin is indeed capable of increasing the thrust of the downstream (tail) fin significantly. Vortex structures shed by the upstream dorsal fin increase the effective angle-of-attack of the flow seen by the tail fin and initiate the formation of a strong leading edge stall vortex on the downstream fin. This stall vortex convects down the surface of the tail and the low pressure associated with this vortex increases the thrust on the downstream tail fin. However, this thrust augmentation is found to be quite sensitive to the phase relationship between the two flapping fins. The numerical simulations allows us to examine in detail, the underlying physical mechanism for this thrust augmentation.   相似文献   

18.
孙茂  王家禄  连淇祥 《力学学报》1992,24(5):517-521
本文通过在翼型上游和翼表面边界层内放置产生氢气泡的铂丝的方法,清楚地显示了上仰翼型分离剪切层的结构。揭示了在不同的翼型转动角速度范围内,存在三种分离流结构。研究了失速涡,剪切涡及起动涡随时间的演变,它们之间的相互作用和转动角速度等参数的影响,分离剪切层的流动显示结果,结合翼型上气动力与流场中涡量矩的关系的理论,定性地解释了上仰翼型产生非定常高升力的原因。  相似文献   

19.
The dynamic stall problem for blades is related to the general performance of wind turbines, where a varying flow field is introduced with a rapid change of the effective angle of attack (AOA). The objective of this work is to study the aerodynamic performance of a sinusoidally oscillating NACA0012 airfoil. The coupled \(k{-}\omega \) Menter’s shear stress transport (SST) turbulence model and \(\gamma {-}Re_{\uptheta }\) transition model were used for turbulence closure. Lagrangian coherent structures (LCS) were utilized to analyze the dynamic behavior of the flow structures. The computational results were supported by the experiments. The results indicated that this numerical method can well describe the dynamic stall process. For the case with reduced frequency \(K = 0.1\), the lift and drag coefficients increase constantly with increasing angle prior to dynamic stall. When the AOA reaches the stall angle, the lift and drag coefficients decline suddenly due to the interplay between the first leading- and trailing-edge vortex. With further increase of the AOA, both the lift and drag coefficients experience a secondary rise and fall process because of formation and shedding of the secondary vortex. The results also reveal that the dynamic behavior of the flow structures can be effectively identified using the finite-time Lyapunov exponent (FTLE) field. The influence of the reduced frequency on the flow structures and energy extraction efficiency in the dynamic stall process is further discussed. When the reduced frequency increases, the dynamic stall is delayed and the total energy extraction efficiency is enhanced. With \(K = 0.05\), the amplitude of the dynamic coefficients fluctuates more significantly in the poststall process than in the case of \(K = 0.1\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号