首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Non-Darcy film condensation over a vertical flat plate within a porous medium is considered. The Forchheimer extended Darcy model is adopted to account for the non-Darcy effects on film condensation in the presence of both gravity and externally forced flow. A general similarity transformation is proposed upon introducing a modified Peclet number based on the total velocity of condensate, resulting from both gravitational force and externally forced flow. This general treatment makes it possible to obtain all possible similarity solutions including the asymptotic results in the four different limiting regimes, namely, Darcy forced convection regime, Forchheimer forced convection regime, Darcy body force predominant regime and Forchheimer body force predominant regime. Appropriate dimensionless groups for distinguishing these asymptotic regimes are found to be the micro-scale Grashof and Reynolds numbers based on the square root of the permeability of the porous medium. Correspondingly, the non-Darcy effect on the heat transfer rate are investigated in terms of these micro-scale dimensionless numbers.  相似文献   

2.
二阶滑移边界对微型气浮轴承稳态性能的影响   总被引:6,自引:1,他引:6  
黄海  孟光  赵三星 《力学学报》2006,38(5):668-673
考虑微型气浮轴承的尺寸特征,内部气流不再满足连续流的假设,根据Knudsen数可确定内 部气流为滑移流. 分别利用一阶速度滑移模型和二阶速度滑移模型对连续流的状态方程进行 修改,得到一阶滑移流和二阶滑移流机制下修正的雷诺方程. 利用有限差分法对连续流、一 阶滑移流和二阶滑移流的雷诺方程分别求解,得出相应的承载力和偏位角. 经过对比分析, 发现采用滑移流模型得到的轴承的稳态力学性能与连续流机制的结果存在较大差异,一阶滑 移流与二阶滑移流间的差异随偏心率增加而增加. 说明在MEMS环境下必须考虑滑移流效应 对微型气浮轴承稳态力学性能的影响. 在大偏心率工作状态下,二阶滑移流模型能够得到最 好的结果.  相似文献   

3.
This paper deals with vibrations of an infinite plate in contact with an acoustic medium where the plate is subjected to a point excitation by an electric motor of limited power-supply. The whole system is divided into two “exciter - foundation” and “foundation-plate-medium”. In the system “motor-foundation” three classes of steady state regimes are determined: stationary, periodic and chaotic. The vibrations of the plate and the pressure in the acoustic fluid are described for each of these regimes of excitation. For the first class they are periodic functions of time, for the second they are modulated periodic functions, in general with an infinite number of carrying frequencies, the difference between which is constant. For the last class they correspond to chaotic functions. In another mathematical model where the exciter stands directly on an infinite plate (without foundation) it was shown that chaos might occur in the system due to the feedback influence of waves in the infinite hydro-elastic subsystem in the regime of motor shaft rotation. In this case the process of rotation can be approximately described as a solution of the fourth order nonlinear differential equation and may have the same three classes of steady state regimes as the first model. That is the electric motor may generate periodic acoustic waves, modulated waves with an infinite number of frequencies or chaotic acoustic waves in a fluid.  相似文献   

4.
The necking of an elastic-plastic circular plate under uniform radial tensile loading is investigated both within the framework of the three-dimensional theory and within the context of the plane-stress approximation. Attention is restricted to axisymmetric deformations of the plate. The material behavior is described by two different constitutive laws. One is a finite-strain version of the simplest flow-theory of plasticity and the other is a finite-strain generalization of the simplest deformationtheory, which is employed as a simple model of a solid with a vertex on its yield surface. For an initially uniform plate made of an incompressible material, bifurcation from the uniformly stretched state is studied analytically. The regimes of stress and moduli where the governing axisymmetric three-dimensional equations are elliptic, parabolic or hyperbolic are identified. The plane-stress local-necking mode emerges as the appropriate limiting mode from the bifurcation modes available in the elliptic regime. In the elliptic regime, the main qualitative features of the bifurcation behavior are revealed by the plane-stress analysis, although three-dimensional effects delay the onset of necking somewhat. For the deformation theory employed here, the first bifurcation modes are encountered in the parabolic regime if the hardening-rate is sufficiently high. These bifurcations are not revealed by a plane-stress analysis. For a plate with an initial inhomogeneity, the growth of an imperfection is studied by a perturbation method, by a plane-stress analysis of localized necking, and by numerical computations within the framework of the three-dimensional theory. When bifurcation of the corresponding perfect plate takes place in the elliptic regime, the finite element results show that the plane-stress analysis gives reasonably good agreement with the numerical results. When bifurcation of the corresponding perfect plate first occurs in the parabolic regime, then a bifurcation of the imperfect plate is encountered, that is, the finite element stiffness matrix ceases to be positive definite.  相似文献   

5.
New results of an experimental investigation of self-oscillatory regimes of plane vertical jet spouting from beneath the free surface of a heavy incompressible fluid are discussed. The experiments were performed on a setup with discharge over a weir. The range of dimensionless jet submergence values on which bifurcation change of spouting regime is observable is studied. It is established that on the Froude number and dimensionless jet submergence ranges considered in the study six characteristic spouting regimes differing in free surface shape and self-oscillation frequency can exist. It is shown that these regimes can be subdivided into three typical groups with respect to the dependence of the self-oscillation period on the jet flow rate. A dimensionless parameter that makes it possible to identify the boundaries of the bifurcation change in spouting regimes is obtained for each of these groups. For certain spouting regimes without the formation of free jets numerical calculations are carried out using the STAR-CD software package; the calculated results are in good agreement with experimental data.  相似文献   

6.
The present paper investigates the dynamics of a laminar plane jet impinging on a flat plate in a channel. An experimental parametric study is carried out to determine the flow regimes at different levels of confinement and Reynolds numbers. For very confined jets, the flow is steady whatever the Reynolds number. The overall structure of the flow is symmetric with respect to the jet axis and is characterized by the presence of recirculation zones at the channel walls. The dynamics is radically different for less confined jets. Above a critical Reynolds number, the flow bifurcates in the form of an oscillating flapping mode of the impinging jet. Analyses of the experimental results provide with a quantitative characterization of this regime in terms of amplitude, wavelength and frequency. This self-oscillating bifurcated flow induces strong sweepings of the target plate by the jet and intense vortex dipole ejections from the impacted wall. Such a regime is expected to be particularly useful in the enhancement of the local heat transfer at relatively low cost in terms of flow rate.  相似文献   

7.
Water waves in coastal areas are generally nonlinear, exhibiting asymmetric velocity profiles with different amplitudes of crest and trough. The behaviors of the boundary layer under asymmetric waves are of great significance for sediment transport in natural circumstances. While previous studies have mainly focused on linear or symmetric waves, asymmetric wave-induced flows remain unclear, particularly in the flow regime with high Reynolds numbers.Taking cnoidal wave as a typical example of asymmetric waves, we propose to use an infinite immersed plate oscillating cnoidally in its own plane in quiescent water to simulate asymmetric wave boundary layer. A large eddy simulation approach with Smagorinsky subgrid model is adopted to investigate the flow characteristics of the boundary layer. It is verified that the model well reproduces experimental and theoretical results. Then a series of numerical experiments are carried out to study the boundary layer beneath cnoidal waves from laminar to fully developed turbulent regimes at high Reynolds numbers, larger than ever studied before.Results of velocity profile, wall shear stress, friction coefficient, phase lead between velocity and wall shear stress, and the boundary layer thickness are obtained. The dependencies of these boundary layer properties on the asymmetric degree and Reynolds number are discussed in detail.  相似文献   

8.
Turbulent premixed flames exhibit different structural and propagation characteristics with increasing upstream turbulence intensity starting from thin wrinkled flames in the Corrugated Flamelet regimes to a flame with a thicker preheat zone in the Thin Reaction Zone Regime (TRZ) and finally, becoming more disorganized or broken in the Distributed or Broken Reaction Zone (D/BRZ) regimes under intense turbulence. A single comprehensive predictive model that can span all regimes does not currently exist, and in this study we explore the ability of the stand-alone one-dimensional linear-eddy mixing (LEM) model to simulate the flames in all these regimes. Past applications of this 1DLEM model have demonstrated reasonable predictions in the flamelet and TRZ regimes and here, new experiments in the TRZ regime are specifically addressed to evaluate the predictive capability of this model. Additional simulations in the D/BRZ regimes (where no data is currently available) are performed to determine if the model can be extended to the high turbulence regime. Comparison with the data in the TRZ regime shows satisfactory agreement. Analysis suggests varying levels of preheat zone broadening in all the TRZ and D/BRZ cases. While the average heat release distribution for the TRZ cases is nearly identical to the laminar unstrained baseline, changes to the species and heat release distribution are observed only at a high Karlovitz Number K a > 103. In the D/BRZ regime it is shown that the transition is related to enhanced turbulent diffusion that dominates molecular diffusion effects causing deviations from the laminar baseline.  相似文献   

9.
Numerical analysis is carried out to investigate viscous flow over a travelling wavy plate undergoing lateral motion in the form of a streamwise travelling wave, which is similar to the backbone undulation of swimming fish. The two‐dimensional incompressible Navier–Stokes equations are solved using the finite element technique with the deforming‐spatial‐domain/stabilized space–time formulation. The objective of this study is to elucidate hydrodynamic features of flow structure and vortex shedding near the travelling wavy plate and to get into physical insights to the understanding of fish‐like swimming mechanisms in terms of drag reduction and optimal propulsive performance. The effects of some typical parameters, including the phase speed, amplitude, and relative wavelength of travelling wavy plate, on the flow structures, the forces, and the power consumption required for the propulsive motion of the plate are analysed. These results predicted by the present numerical analysis are well consistent with the available data obtained for the wave‐like swimming motion of live fish in nature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
基于建立的湿颗粒离散动力学模型,本文系统研究了钟摆状态下湿颗粒柱在重力驱动下的坍塌流动过程,主要考虑了颗粒粒径、液体表面张力系数和液体含量等参数对系统坍塌流动模式和动力学行为的影响。研究发现,在湿颗粒系统中,颗粒粒径和液体表面张力系数会改变颗粒间的毛细力大小,引起系统发生不同的坍塌流动模式,而液体含量仅定量影响颗粒坍塌后的堆积形态。在此基础上,进一步探讨了不同模式下系统坍塌流动行为与模型参数的相关性,发现无量纲Bond数是决定钟摆状态下湿颗粒物质坍塌流动动力学行为的本质因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号