首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
胡俊  韦璐 《应用力学学报》2015,(3):430-434,7
试验研究了四种不同密度的聚苯乙烯EPS泡沫材料单轴压缩下的应力-应变关系。在Gibson模型和Rusch模型基础上建立了EPS泡沫单轴压缩下应力-应变关系模型,并对建立的模型中各参数分别进行了定义;通过对能量吸收图、吸能效率图、理想吸能效率图的分析表明:在0.687MPa<σ≤1.038MPa范围内,密度为55kg/m3的EPS泡沫吸收的能量最大,当σ>1.038MPa时,吸收的能量随密度的增加而增加;四种密度的泡沫(28kg/m3、40kg/m3、55kg/m3、70kg/m3)在吸能能力最佳时的应力分别为0.396MPa、0.565MPa、0.866MPa、1.222MPa;密度为55kg/m3的EPS泡沫最接近于理想吸能材料。  相似文献   

2.
聚氨酯泡沫铝动力学性能实验及本构模型研究   总被引:2,自引:0,他引:2  
为了改进泡沫铝的动态吸能性能,将聚氨酯填充到开孔泡沫铝中制备成复合材料。通过霍普金森杆(SHPB)冲击实验,研究包含相对密度、应变、应变率和聚氨酯含量等影响因素的聚氨酯泡沫铝材料的动力学性能,并建立了动态本构模型。实验结果表明,聚氨酯泡沫铝的动态弹性模量与相对密度无关,屈服强度和流变应力与应变率和泡沫铝的相对密度成正比;聚氨酯泡沫铝的屈服强度与泡沫聚氨酯质量增加近似呈线性关系。所建立的动态本构模型在相对密度和应变率在一定的变化范围内与实验数据吻合较好。  相似文献   

3.
采用HMH-206高速材料试验机开展了6061-T6铝合金在0.001~100 s?1应变率范围内的静、动态拉伸力学性能实验,分析了其应力-应变响应特征和应变率敏感性,讨论了应变率对6061-T6铝合金流动应力和应变率敏感性指数的影响,并基于实验结果对Johnson-Cook本构模型进行了修正。结合缺口试件的实验结果和模拟数据,得到了材料的Johnson-Cook失效模型参数,并对模型的准确性和适用性进行了验证。结果表明,在拉伸载荷作用下,6061-T6铝合金表现出明显的应变硬化特征和应变率敏感性,其流动应力随应变率的升高而提高,修正的Johnson-Cook本构模型可以描述材料的动态塑性流动行为,建立的Johnson-Cook失效模型能够表征材料的断裂失效行为。  相似文献   

4.
高孔隙率泡沫铝芯体三明治板具有轻质、高比刚度和减振吸能等优良的力学特性和物理特性,被广泛地应用于碰撞吸能部件上.近年来,高孔隙率泡沫铝在动态压缩下是否具有应变率敏感性成为广大学者的研究焦点.论文建立了横观各向同性率相关本构模型来描述高孔隙率泡沫铝的应变率效应,给出了有限元的计算步骤,基于ABAQUS/Explicit平...  相似文献   

5.
对混凝土类材料动态压缩应变率效应研究的发展及问题进行了概述,对比不同应力状态下混凝土类材料动态压缩应变率效应的表现特征,揭示了不同加载路径下实测动态强度提高系数的显著差异。研究表明,在高应变率下,基于初始一维应力加载路径的试件将因横向惯性效应导致的侧向围压而演化至多维应力状态,传统霍普金森杆技术无法获得高应变率下基于真实一维应力路径的动态强度提高系数,在强度模型中直接应用实测数据将过高估计材料的动态强度。鉴于应变率效应的加载路径依赖性,将仅包含应变率的强度提高系数模型扩展至同时计及应变率和应力状态的多维应力状态模型,并结合Drucker-Prager准则在强度模型中给予了实现。针对具有自由和约束边界试件开展的数值霍普金森杆实验表明,多维应力状态下的应变率效应模型可以考虑应变率效应随应力状态改变的特点,从而准确预测该类材料的动态压缩强度。研究结果可为正确应用霍普金森杆技术确定脆性材料的动态压缩强度提供参考。  相似文献   

6.
谢中秋  张蓬蓬 《实验力学》2013,28(2):220-226
利用INSTRON万能试验机和分离式Hopkinson压杆(SHPB)对PMMA试件在较宽应变率范围内进行了单轴压缩实验,研究加载应变率对PMMA材料力学性能的影响.利用扫描电子显微镜对回收的试样进行了显微观察,重点分析不同加载应变率下PMMA的微观损伤破坏模式.结果表明:随着应变率的增大,PMMA的流动应力显著地增加,且冲击加载条件下,峰值应力的应变率敏感性明显高于准静态;在准静态加载条件下,PMMA试样呈现明显的延性破坏特征,在动态加载条件下则表现为脆性破坏.最后,对PMMA材料的ZWT粘弹性本构模型参数进行了拟合,拟合结果与实验结果吻合较好,表明该本构模型能够较好地描述较宽应变率范围内PMMA材料的应力应变关系.  相似文献   

7.
在交通事故中,腹部器官常因冲击载荷作用而受到伤害,严重时甚至危及生命.肝损伤是腹部损伤中最为常见的一种,致死率很高,了解肝脏的动态力学性能对于事故中肝脏的损伤评估及防护设计有着重要的意义.从新鲜的猪肝组织中取肝实质部分制作试样,利用英斯特朗材料试验机对其进行两种加载率(0.004 s~(-1),0.04 s~(-1))和两种加载方向(垂直肝脏表面和平行于肝脏表面)的准静态压缩试验,并压缩至破坏.利用改进的分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)实验装置沿平行于肝脏表面方向进行三种高应变率(1 300 s~(-1),2 400 s~(-1),4 500 s~(-1))的动态压缩试验.结果表明:所有应变率下的猪肝压缩应力应变曲线都呈非线性凹向上特征,初始阶段应力值很低,应变约30%后应力幅值显著增大;准静态压缩时,两种应变率(0.004 s~(-1),0.04 s~(-1))和两种加载方向下肝脏组织破坏应力和破坏应变等力学性能无显著不同,平均破坏应变为48%,平均破坏应力为0.45 MPa.高应变率下肝脏组织的流动应力明显高于准静态下的流动应力,表现出一定的率敏感性.采用Yeoh型超弹性本构模型描述猪肝组织准静态力学性能,基于黏超弹性模型理论,提出了一个能描述肝脏组织从低应变率到高应变率范围力学性能的率相关本构模型,该模型与实验结果有很好的一致性.  相似文献   

8.
为考察脆性空心颗粒材料冲击载荷下的力学特性,以具有不同粒径分布的粉煤灰漂珠为研究对象,对其静动态力学性能进行实验研究。通过限制颗粒材料压缩应变为50%,分析颗粒破碎率和破碎机理与材料宏观应变率效应的关系。结果表明:(1)不同粒径的漂珠颗粒材料在动态压缩下较准静态压缩下颗粒材料的强度均有明显的增强,在0.001和150 s?1大小颗粒的强度分别提高200%和195%,在150和300 s?1大小颗粒的强度分别提高39%和51.5%,在300和800 s?1大小颗粒的强度并未发生明显的变化;(2)在相同加载速度下粒径较小的颗粒比大粒径颗粒的强度和吸能效果分别提高35%~40%和35%~48%;(3)对破碎后颗粒粒径分布曲线分析可知,随着加载速度的增加,大小颗粒的破碎率和破碎程度都会增大,且在相同加载速度下大颗粒的破碎率较小颗粒的破碎率高;(4)Hardin破碎势分析表明,单位输入能量下颗粒的相对破碎势随冲击速度增大而减小,动态冲击下用于颗粒破碎的能量利用率降低,从而导致材料在相同压缩量下产生更高的能量耗散和应力水平,即表现为宏观的应变率效应。  相似文献   

9.
通孔泡沫铝的动态压缩行为   总被引:4,自引:0,他引:4  
在SHPB装置上对渗流法制备的通孔泡沫铝进行了动态压缩实验,研究了相对密度为0.341~0.419的通孔泡沫铝在10-3~2000 s-1应变率范围内的压缩响应特征和应变率相关性,并用扫描电镜(scanning electron microscope,SEM)分析了泡沫铝的压缩变形特征。实验结果表明,通孔泡沫铝有明显应变率效应,随应变率上升,泡沫铝流动应力提高。SEM观察结果揭示,在动态压缩下,通孔泡沫铝宏观上均匀变形,微观变形机制以泡孔横向伸展坍塌为主。  相似文献   

10.
以泡沫陶瓷复合材料在防护工程中的应用为背景,利用MTS(Material Test System,材料试验机)对该型材料进行了准静态压缩实验。得到了应变率在10-5~10-3s-1范围内的应力应变曲线,并对实验结果进行了理论分析和数值模拟。研究表明,泡沫陶瓷复合材料的力学性能在准静态一维应力压缩条件下显示出明显的应变率效应,同时其应力应变曲线可用一种经验的脆性材料本构模型进行较好地拟合。而在一维应变压缩条件下,材料的应力应变曲线则显示出明显的三段式特征:弹性段、平台段和密实段,同时材料的吸能幅值随着应变率的增大而增加。  相似文献   

11.
填充硅橡胶的泡沫铝复合材料的力学性能   总被引:2,自引:0,他引:2  
田杰  胡时胜 《爆炸与冲击》2005,25(5):400-404
用渗流法向开孔泡沫铝-硅合金和泡沫纯铝中充填硅橡胶获得含硅橡胶的泡沫材料, 在材料试验机和SHPB上对含硅橡胶的复合材料进行动态与准静态压缩实验。实验结果表明:含硅橡胶的泡沫复合材料只有弹性段和塑性段两个阶段,具有更高的应变率敏感性,其应力-应变曲线抖动幅度比较大。  相似文献   

12.
利用带有波形整形器的Split Hopkinson Pressure Bar(SHPB)技术测试了碳布叠层/碳复合材料在应变率为500、1 500 s-1时的动态压缩性能。研究结果表明:利用轧制紫铜作为整形器材料不仅可以有效地实现对碳布叠层/碳复合材料的常应变率压缩加载,而且有助于改善试样两端的应力平衡,从而保证测试数据的可靠性;此外,与准静态压缩相比较,在动态压缩载荷下,碳布叠层/碳复合材料的压缩强度有较强的应变率效应,且复合材料压缩强度的动态增加函数可以用Cowper-Symonds幂函数的形式来表示。  相似文献   

13.
高应变率下航空透明聚氨酯的动态本构模型   总被引:1,自引:0,他引:1  
采用低阻抗分离式霍普金森压杆对航空透明聚氨酯进行了高应变率下的动态力学性能测试,得到的应力应变曲线表现出了显著的非线性黏弹性特征。基于本构理论和实验数据,构建了航空透明聚氨酯的松弛时间应变相关的超黏弹性本构形式。该本构模型由2部分组成:一部分表征准静态下的超弹性行为,另一部分描述非线性应变率的相关特性。利用超黏弹性本构模型对不同应变率下航空透明聚氨酯的动态应力应变曲线进行拟合,拟合曲线与实验曲线一致性良好。  相似文献   

14.
泡沫铝合金动态力学性能实验研究   总被引:6,自引:0,他引:6  
利用分离式霍布金森压杆(SHPB)实验技术和MTS材料实验机对两组不同孔径、不同密度的开孔泡沫铝合金进行了准静态和动态压缩实验研究。实验结果表明:泡沫铝合金的静态和动态变形过程均具有泡沫材料变形的三个阶段特征。开孔泡沫铝合金的变形是均匀变化过程,并不出现局部的变形带。与相对密度对力学性能的影响相比,孔径大小的影响可以忽略不计。在考察的应变率范围内,屈服应力对应变率并不很敏感。  相似文献   

15.
多孔材料是一种优异的吸能缓冲材料,但由于其变形模式的非单一性以及动态应力应变曲线的难获取性,其吸能行为对相对密度和冲击速度的依赖性关系还并不完全明朗。本文基于不需要提前作本构假定的波传播法,开展了多孔材料的吸能行为研究。采用多孔材料的细观有限元模型进行Taylor冲击虚拟实验,获取全场质点速度时程曲线,结合Lagrange分析法得到多孔材料的局部应力应变信息,进而探讨了动态吸能性能对材料相对密度和冲击速度的依赖性。研究结果表明多孔材料的吸能行为可依据变形模式分为三个阶段。在冲击模式下,多孔材料单位体积吸能与相对密度成线性增加关系,此时惯性起主导作用;在过渡模式下,惯性的主导作用减弱,单位体积吸能量的增加速率随相对密度的增加而减弱;在准静态模式下,多孔材料只能发生微小的变形,其吸能很少。本文进一步获得了区别于多孔材料准静态应力-应变曲线的动态应力-应变状态曲线,并考察了其与相对密度之间的关系。结果表明:随着相对密度的增加,多孔材料的动态压实应变将变小,而动态塑性平台应力将提高。  相似文献   

16.
为了探索具有优异吸能性能的软基体混合胞孔材料的力学性能,研究该类材料在多次冲击下的冲击响应和材料的可恢复性,对一种软基体混合胞孔材料—人工软骨仿生超材料(artificial cartilage foam,ACF)进行了不同速度下的单轴拉伸和压缩实验,得到了ACF材料在不同应变率条件下的应力-应变曲线。并利用落锤冲击实验机对ACF材料和另一种软基体混合胞孔材料—发泡聚丙烯材料(expanded polypropylene,EPP)进行了多次冲击下的对比测试,得到了2种材料在单次和多次冲击下的动力学响应。实验结果表明:ACF材料是一种应变率敏感的材料,随着应变率的提升,材料的弹性模量、抗拉强度和抗压强度均逐渐提高;在50 J 冲击能量作用下,ACF材料能够吸收96%以上的冲击能量,远高于EPP材料的70%,ACF材料具有更加优异的吸能性能;5次冲击后ACF材料的最大峰值力、最大变形量和吸能能力几乎不变。相比于EPP材料,ACF材料有良好的可恢复性,且具有稳定的多次抗冲击能力。这些研究为软基体混合胞孔材料在多次冲击防护中的应用提供了实验依据。  相似文献   

17.
为研究低高应变率条件下NEPE推进剂的力学特性,通过电子万能试验机和分离式霍普金森杆装置,对NEPE推进剂进行了准静态和冲击实验,得到了不同应变率下(1.667×10?4~4 500 s?1)的应力-应变曲线。实验结果表明NEPE推进剂具有明显的非线性弹性和应变率敏感性,随着应变率的增加,材料的强度、屈服应力和弹性模量显著增加,与低应变率相比,高应变率条件下材料的应变率敏感性更高。在高速冲击下材料内部瞬间产生大量热量无法及时散发出去,使得材料内部温度升高,导致材料出现软化效应,力学性能降低。本文建立了一个非线性黏超弹本构模型,其中采用Rivlin应变能函数来描述稳态超弹响应部分,采用积分型本构模型来描述材料的动态黏弹性响应部分,考虑到松弛时间具有应变率相关性,本文采用了一个率相关松弛函数来替代传统的Prony级数形式。使用极慢速压缩实验数据对本构模型中的超弹部分进行拟合获得超弹参数,然后用准静态和动态实验数据对本构模型进行拟合得出其他参数。不同应变率下的预测曲线与实验曲线具有较好的重合度,证明了该模型可以很好地描述低高应变率下NEPE推进剂的力学特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号