首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A newly developed multi-axial testing technique for sheet materials is employed to investigate the inelastic response of a temper-rolled stainless steel 301LN under isothermal quasi-static loading conditions at room temperature. The experimental technique consists of a flat sheet specimen, which is subject to combinations of shear and normal loading using a custom-made dual-actuator system. The large deformation behavior under monotonic loading is determined along more than 20 distinct radial paths in the stress space. The experimental results indicate that Hill's quadratic yield function along with an associated flow rule provides a good approximation of the initial yield behavior of this anisotropic two-phase FCC/BCC sheet material. Based on the experimental data for radial monotonic loading, it is concluded that conventional isotropic-kinematic hardening models cannot successfully describe the strain hardening of this austenitic steel. Instead, a non-associated anisotropic hardening model is proposed that relates the increase in yield strength to an isothermal martensitic transformation kinetics law. The comparison of the model predictions with the experimental results shows very good agreement for all biaxial and uniaxial experiments.  相似文献   

2.
In this paper an anisotropic material model based on non-associated flow rule and mixed isotropic–kinematic hardening was developed and implemented into a user-defined material (UMAT) subroutine for the commercial finite element code ABAQUS. Both yield function and plastic potential were defined in the form of Hill’s [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 193, 281–297] quadratic anisotropic function, where the coefficients for the yield function were determined from the yield stresses in different material orientations, and those of the plastic potential were determined from the r-values in different directions. Isotropic hardening follows a nonlinear behavior, generally in the power law form for most grades of steel and the exponential law form for aluminum alloys. Also, a kinematic hardening law was implemented to account for cyclic loading effects. The evolution of the backstress tensor was modeled based on the nonlinear kinematic hardening theory (Armstrong–Frederick formulation). Computational plasticity equations were then formulated by using a return-mapping algorithm to integrate the stress over each time increment. Either explicit or implicit time integration schemes can be used for this model. Finally, the implemented material model was utilized to simulate two sheet metal forming processes: the cup drawing of AA2090-T3, and the springback of the channel drawing of two sheet materials (DP600 and AA6022-T43). Experimental cyclic shear tests were carried out in order to determine the cyclic stress–strain behavior and the Bauschinger ratio. The in-plane anisotropy (r-value and yield stress directionalities) of these sheet materials was also compared with the results of numerical simulations using the non-associated model. These results showed that this non-associated, mixed hardening model significantly improves the prediction of earing in the cup drawing process and the prediction of springback in the sidewall of drawn channel sections, even when a simple quadratic constitutive model is used.  相似文献   

3.
Constitutive equations for class of materials that possess granular microstructure can be effectively derived using granular micromechanics approach. The stress–strain behavior of such materials depends upon the underlying grain scale mechanisms that are modeled by using appropriate rate-dependent inter-granular force–displacement relationships. These force–displacement functions are nonlinear and implicit evolutions equations. The numerical solution of such equation under applied overall stress or strain loading can entail significant computational expense. To address the computations issue, an efficient explicit time-integration scheme has been derived. The developed model is then utilized to predict primary, secondary and tertiary creep as well as rate-dependent response under tensile and compressive loads for hot mix asphalt. Further, the capability of the derived model to describe multi-axial behavior is demonstrated through generations of biaxial time-to-creep failure envelopes and rate-dependent failure envelopes under monotonic biaxial and triaxial loading. The advantage of the approach presented here is that we can predict the multi-axial effects without resorting to complex phenomenological modeling.  相似文献   

4.
Recently, a rate-independent, finite-deformation-based crystal mechanics constitutive model for martensitic reorientation and detwinning in shape-memory alloys has been developed by Thamburaja [Thamburaja, P., 2005. Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. Journal of the Mechanics and Physics of Solids 53, 825–856] and implemented in the ABAQUS/Explicit [Abaqus reference manuals. 2005. Providence, RI] finite-element program. In this work, we show that the aforementioned model is able to quantitatively predict the experimental response of an initially textured and martensitic polycrystalline Ti–Ni rod under a variety of uniaxial and multi-axial stress states. By fitting the material parameters in the model to the stress–strain response in simple tension, the constitutive model predicts the stress–strain curves for experiments conducted under simple compression, torsion, proportional-loading tension–torsion, and path-change tension–torsion loading conditions to good accord. Furthermore the constitutive model also reproduces the force–displacement response for an indentation experiment to reasonable accuracy.  相似文献   

5.
In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials is derived. The evolution equation for the active yield surface with reference to the memory yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function for pressure insensitive and sensitive materials. Detailed incremental constitutive relations for materials based on the Mises yield function, the Hill quadratic anisotropic yield function and the Drucker–Prager yield function are derived as the special cases. The closed-form solutions for one-dimensional stress–plastic strain curves are also derived and plotted for materials under cyclic loading conditions based on the three yield functions. In addition, the closed-form solutions for one-dimensional stress–plastic strain curves for materials based on the isotropic Cazacu–Barlat yield function under cyclic loading conditions are summarized and presented. For materials based on the Mises and the Hill anisotropic yield functions, the stress–plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. For materials based on the Drucker–Prager and Cazacu–Barlat yield functions, the stress–plastic strain curves do not close and show the ratcheting effect under uniaxial cyclic loading conditions. The ratcheting effect is due to different strain ranges for a given stress range for the unloading and reloading processes. With these closed-form solutions, the important effects of the yield surface geometry on the cyclic plastic behavior due to the pressure-sensitive yielding or the unsymmetric behavior in tension and compression can be shown unambiguously. The closed form solutions for the Drucker–Prager and Cazacu–Barlat yield functions with the associated flow rule also suggest that a more general anisotropic hardening theory needs to be developed to address the ratcheting effects for a given stress range.  相似文献   

6.
By representing the assembly by a simplified column model, a constitutive theory, referred to as sliding–rolling theory, was recently developed for a two-dimensional assembly of rods subjected to biaxial loading, and then extended to a three-dimensional assembly of spheres subjected to triaxial (equibiaxial) loading. The sliding–rolling theory provides a framework for developing a phenomenological constitutive law for granular materials, which is the objective of the present work. The sliding–rolling theory provides information concerning yield and flow directions during radial and non-radial loading. In addition, the theory provides information on the role of fabric anisotropy on the stress–strain behavior and critical state shear strength. In the present paper, a multi-axial phenomenological model is developed within the sliding–rolling framework by utilizing the concepts of critical state, classical elasto-plasticity and bounding surface. The resulting theory involves two yield surfaces and falls within the definition of the multi-mechanism models. Computational issues concerning the solution uniqueness for stress states at the corner of yield surfaces are addressed. The effect of initial and induced fabric anisotropy on the constitutive behavior is incorporated. It is shown that the model is capable of simulating the effect of anisotropy, and the behavior of loose and dense sands under drained and undrained loading.  相似文献   

7.
This paper deals with the development of a new experimental technique for the multi-axial testing of flat sheets and its application to advanced high strength steels. In close analogy with the traditional tension-torsion test for bulk materials, the sheet material is subject to combined tension and shear loading. Using a custom-made dual actuator hydraulic testing machine, combinations of normal and tangential loading are applied to the boundaries of a flat sheet metal specimen. The specimen shape is optimized to provide uniform stress and strain fields within its gage section. Finite element simulations are carried out to verify the approximate formulas for the shear and normal stress components at the specimen center. The corresponding strain fields are determined from digital image correlation. Two test series are performed on a TRIP-assisted steel sheet. The experimental results demonstrate that this new experimental technique can be used to investigate the large deformation behavior of advanced high strength steel sheets. The evolution of the yield surface of the TRIP700 steel is determined for both radial and non-proportional loading paths.  相似文献   

8.
An event independent cumulative damage (EVICD) fatigue prediction model was previously developed for the fatigue damage prediction under general multiaxial stress state and loading conditions. The model takes the plastic strain energy as the major contributor to the fatigue damage. The application of the EVICD model does not require a cycle counting method for general random loading. In the current effort, derivations were made to explicitly and directly relate the material constants in the fatigue model to the parameters in the Manson–Coffin equations and the cyclic stress–strain curve of the material. In addition, an advanced cyclic plasticity theory was implemented for the determination of the detailed stress–strain response that was required as the input for the EVICD fatigue model. Three metallic materials were used to demonstrate the capability of the modified fatigue model for the predictions of fatigue lives under different loading conditions. The results show that the fatigue model can provide fatigue life predictions in close agreement with the experimental observations.  相似文献   

9.
Crystal plasticity finite element analysis of cyclic deformation of compatible type FCC bicrystals are performed. The model specimen used in the analysis is a virtual FCC bicrystal with an isotropic elastic property; therefore, the effect of constraint due to elastic incompatibility does not appear. The results of the analysis show the strain-amplitude-dependence of both the organization of the GND structure and the stress–strain behavior. The calculated stress–strain curve with the largest strain amplitude shows additional cyclic hardening. The microscopic mechanisms of the strain-amplitude-dependent organization of the GND structure and additional cyclic hardening behavior are discussed in terms of the activation of secondary slip system(s). Finally, the effects of the elastic anisotropy, the lattice friction stress and the interaction between dislocations are also argued.  相似文献   

10.
Experiments have shown that magnesium alloy sheet a common hexagonal close-packed metal, exhibits mechanical behavior unlike that of sheets made of cubic metals (X.Y. Lou et al., 2007, Int. J. Plasticity, 24, 44). The unique stress–strain response includes a strong asymmetry in the initial yield and subsequent plastic hardening. In other words, the stress–strain curves in tension and compression are significantly different. A proper representation of the constitutive relationships is crucial for the accurate evaluation of springback, which occurs due to the residual moment distribution through the sheet thickness after bending. In this paper, we propose an analytical model for asymmetric elasto-plastic bending under tension followed by elastic unloading in order to evaluate the bending moment, which is equivalent to the springback amount. To simplify the calculations, the experimentally measured stress–strain curve of the magnesium alloy sheet was approximated with discrete linear hardening in each deformation region, and the material properties were characterized according to several simplifying assumptions. The bending moment was calculated analytically using the approximate asymmetric stress–strain relationship up to the prescribed curvature corresponding to the radius of the tool in sheet metal forming operations. A numerical example showed an unusual springback increase, even with an increase in the applied force; this is an unexpected result for conventional symmetric materials. We also compared the calculated springback amounts with the results of physical measurements. This showed that the proposed model predicts the main trends of the springback in magnesium alloy sheets reasonably well considering the simplicity of the analytical approach.  相似文献   

11.
A new crystal plasticity model incorporating the mechanically induced martensitic transformation in metastable austenitic steel has been formulated and implemented into the finite element analysis. The kinetics of martensite transformation is modeled by taking into consideration of a nucleation-controlled phenomenon, where each potential martensitic variant based on Kurdjumov–Sachs (KS) relationship has different nucleation probability as a function of the interaction energy between externally applied stress and lattice deformation. Therefore, the transformed volume fractions are determined following selective variants given by the crystallographic orientation of austenitic matrix and applied stress in the frame of the crystal plasticity finite element. The developed finite element program is capable of considering the effect of volume change by the Bain deformation and the lattice-invariant shear during the martensitic transformation by effectively modifying the evolution of plastic deformation gradient of the conventional rate-dependent crystal plasticity finite element. The validation of the proposed model has been carried out by comparing with the experimentally measured data under simple loading conditions. Good agreements with the measurements for the stress–strain responses, transformed martensitic volume fractions and the influence of strain rate on the deformation behavior will enable the model to be promising for the future applications to the real forming process of the TRIP aided steel.  相似文献   

12.
Strain bursts are often observed during compression tests of single crystal micropillars. In this work, we formulate a new continuum model that accounts for the strain bursts within the framework of crystal plasticity. The strain bursts are separated from the loading stage (nearly elastic loading) by introducing a dimensionless constant in the continuum model, and are detected by load serrations. The boundary conditions in the context of micropillar compression are studied and they are shown to be changing and unpredictable as plastic deformation proceeds. To evaluate the validity of our model, finite element simulations of the uniaxial compression tests on nickel micropillars are performed. Our simulations produce clearly visible strain bursts during the plastic flow and the produced intermittent flows are comparable with the experimental observations. For the bulk crystal, a series of strain bursts is identified in the course of plastic flow, despite an apparently smooth stress–strain response. We also show that the intermittent flow is intensified in the micrometer-scale due to both increasing numbers of the successive strain bursts and increasing amplitude of the strain burst, when the specimen size decreases. Finally, we show that the occurrences of the strain bursts are always associated with negative values of the second-order work.  相似文献   

13.
The mechanical response of metal–ceramic composites is analysed through a homogenization model accounting for the mechanical behaviour of the constituent materials. In order to achieve this purpose a nonlinear homogenization method based on the phase field approach has been suitably implemented into a numerical code. A prescribed homogenized strain state is applied to a unit volume element of a metal–ceramic composite with proportional loading in which all components of the strain tensor are proportional to one scalar parameter. The mechanical response of the material has been modeled by considering a von Mises plasticity model for the metal phase and a Drucker–Prager associative elastic–plastic material model for the ceramic phase. A two stages plasticity has been obtained in which inelastic strain develops in the metal phase followed by a fully plastic response. A comparison with a finite element model of the stress–strain response of an axisymmetric unit cell has been carried out with the purpose to validate the homogenization based modeling presented in the paper. Plastic parameters of a Drucker–Prager yield surface for the homogenized composite have been calculated at different materials compositions. Associative Drucker–Prager plasticity has been found to be accurate for high ceramic content.  相似文献   

14.
Forming limit stresses of sheet metals subjected to linear and combined stress paths are analyzed using the M-K model in conjunction with two anisotropic work-hardening models: a work-hardening model which is capable of describing Bauschinger and cross-hardening effects, and a work-hardening model which cannot predict the cross-hardening effect. It is found that the forming limit stress is path-independent when the stress–strain curves for the linear and combined stress paths agree well with each other. On the other hand, the forming limit stress for the combined stress path depends on the strain path when the prestrain changes the subsequent stress–strain relation. We conclude that the stress-based forming limit criterion is efficient only for a material with a work-hardening behavior that is not affected by strain path change. The influence of the work-hardening behavior on the forming limit stress is discussed in detail.  相似文献   

15.
The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated.  相似文献   

16.
In the present paper, a finite element formulation based on non-associated plasticity is developed. In the constitutive formulation, isotropic hardening is assumed and an evolution equation for the hardening parameter consistent with the principle of plastic work equivalence is introduced. The yield function and plastic potential function are considered as two different functions with functional form as the yield function of Hill [Hill, R., 1948. Theory of yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. A 193, 281–297] or Karafillis–Boyce associated model [Karafillis, A.P. Boyce, M., 1993. A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids 41, 1859–1886]. Algorithmic formulations of constitutive models that utilize associated or non-associated flow rule coupled with Hill or Karafillis–Boyce stress functions are derived by application of implicit return mapping procedure. Capabilities in predicting planar anisotropy of the Hill and Karafillis–Boyce stress functions are investigated considering material data of Al2008-T4 and Al2090-T3 sheet samples. The accuracy of the derived stress integration procedures is investigated by calculating iso-error maps.  相似文献   

17.
The present study aims at characterizing the post-necking strain hardening behavior of three sheet metals having different hardening behavior. Standard tensile tests were performed on sheet metal specimens up to fracture and heterogeneous logarithmic strain fields were obtained from a digital image correlation technique. Then, an appropriate elasto-plastic constitutive model was chosen. Von Mises yield criterion under plane stress and isotropic hardening law were considered to retrieve the relationship between stress and strain. The virtual fields method (VFM) was adopted as an inverse method to determine the constitutive parameters by calculating the stress fields from the heterogeneous strain fields. The results show that the choice of a hardening law which can describe the hardening behavior accurately is important to derive the true stress–strain curve. Finally, post-necking hardening behavior was successfully characterized up to the initial stage of localized necking using the VFM with Swift and modified Voce laws.  相似文献   

18.
Some novel discriminating multiaxial cyclic strain paths with incremental and random sequences were used to investigate cyclic deformation behavior of materials with low and high sensitivity to non-proportional loadings. Tubular specimens made of 1050 QT steel with no non-proportional hardening and 304L stainless steel with significant non-proportional hardening were used. 1050 QT steel was found to exhibit very similar behavior under various multiaxial loading paths, whereas significant effects of loading sequence were observed for 304L stainless steel. In-phase cycles with a random sequence of axial-torsion cycles on an equivalent strain circle were found to cause cyclic hardening levels similar to 90° out-of-phase loading of 304L stainless steel. In contrast, straining with a small increment of axial-torsion on an equivalent strain circle results in higher stress than for in-phase loading of 304L stainless steel, but the level of hardening is lower than for 90° out-of-phase loading. Tanaka’s non-proportionality parameter coupled with a Armstrong–Fredrick incremental plasticity model, and Kanazawa et al.’s empirical formulation as a representative of such empirical models were used to predict the stabilized stress response of the two materials under variable amplitude axial-torsion strain paths. Consistent results between experimental observations and predictions were obtained by employing the Tanaka’s non-proportionality parameter. In contrast, the empirical model resulted in significant over-prediction of stresses for 304L stainless steel.  相似文献   

19.
Triaxial compressive tests of frozen silt were carried out under confining pressures from 0.0 to 14.0 MPa at the temperatures of −2, −4 and −6 °C. A strength criterion based upon experimental results is presented by the combination of extended Lade–Duncan strength function fπ(θ) in π-plane and fpq(p) in pq-plane. In order to describe the deformation characteristic of frozen silt, an elastoplastic constitutive model in generalized plastic mechanics has been proposed for the nonlinear behavior of frozen silt, such as the pressure melting and crushing phenomena, strain softening/hardening characteristics and dilatation, etc., by employing an elliptical yield surface, together with a non-associated flow rule for the compressive mechanism, and two parabolic yield surfaces, together with non-associated flow rules for the shear mechanism. The validity of the model is verified by comparing its modeling results with the results of triaxial compressive tests. It is found that the stress–strain curves predicted by this model agree well with the corresponding experimental results both under low and high confining pressures.  相似文献   

20.
An improved model of material behavior is proposed that shows good agreement with experimental data for both yield and plastic strain ratios in uniaxial, equi-biaxial, and plane-strain tension under proportional loading for steel, aluminum and possibly other alloys. This model is based on a non-associated flow rule in which the plastic potential and yield surface functions are defined by quadratic functions of the stress tensor. The plastic potential aspect of the model is identical to that proposed by Hill for a quadratic anisotropic plastic potential defined in terms of measured r values. The new model differs in that the yield surface, although also defined by a quadratic function of the stress tensor, is defined independently of the plastic potential in terms of measured yield stresses. The model is developed and implemented in an FEM code that is based on a convected coordinate system. Since the associated flow rule, which assumes equivalency between the plastic potential and yield functions, is commonly accepted as a valid law in the theory of plastic deformation of most metals, the arguments for the associated flow rule are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号