首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
It is shown that extended irreversible thermodynamics can be used to account for the shear rate and frequency dependences of several material functions like shear viscosity, first and second normal stress coefficients, dynamic viscosity and storage modulus. Comparison with experimental data on steady shearing and small oscillatory shearing flows is performed. A good agreement between the model and experiment is reached in a wide scale of variation of the shear rate and the frequency of oscillations. The relation between the present model which includes quadratic terms in the pressure tensor and the Giesekus model is also examined.  相似文献   

2.
Results are reported for the dynamic moduli,G andG, measured mechanically, and the dynamic third normal stress difference, measured optically, of a series bidisperse linear polymer melts under oscillatory shear. Nearly monodisperse hydrogenated polyisoprenes of molecular weights 53000 and 370000 were used to prepare blends with a volume fraction of long polymer, L, of 0.10, 0.20, 0.30, 0.50, and 0.75. The results demonstrate the applicability of birefringence measurements to solve the longstanding problem of measuring the third normal stress difference in oscillatory flow. The relationship between the third normal stress difference and the shear stress observed for these entangled polymer melts is in agreement with a widely predicted constitutive relationship: the relationship between the first normal stress difference and the shear stress is that of a simple fluid, and the second normal stress difference is proportional to the first. These results demonstrate the potential use of 1,3-birefringence to measure the third normal stress difference in oscillatory flow. Further, the general constitutive equation supported by the present results may be used to determine the dynamic moduli from the measured third normal stress difference in small amplitude oscillatory shear. Directions for future research, including the use of birefringence measurements to determineN 2/N 1 in oscillatory shear, are described.  相似文献   

3.
The Cox–Merz rule and Laun’s rule are two empirical relations that allow the estimation of steady shear viscosity and first normal stress difference, respectively, using small amplitude oscillatory shear measurements. The validity of the Cox–Merz rule and Laun’s rule imply an agreement between the linear viscoelastic response measured in small amplitude oscillatory shear and the nonlinear response measured in steady shear flow measurements. We show that by using a lesser-known relationship also proposed by Cox and Merz, in conjunction with Laun’s rule, a relationship between the rate-dependent steady shear viscosity and the first normal stress difference can be deduced. The new empirical relation enables a priori estimation of the first normal stress difference using only the steady flow curve (i.e., viscosity vs shear rate data). Comparison of the estimated first normal stress difference with the measured values for six different polymer solutions and melts show that the empirical rule provides values that are in reasonable agreement with measurements over a wide range of shear rates, thus deepening the intriguing connection between linear and nonlinear viscoelastic response of entangled polymeric materials.  相似文献   

4.
Two series of oscillatory flow tests were carried out on two concentrated polysaccharide systems (hydroxyethyl guar gum and scleroglucan) in order to evaluate the possibilities offered by large-deformation techniques for the discrimination between different classes of macromolecular systems (i.e., entanglement networks and weak gels). Frequently and strain sweeps, as well as combined steady and oscillatory shear tests were performed to analyze the influence of strain amplitude and of the superposed parallel shear rate on the dynamic properties of these materials.  相似文献   

5.
刚性圆管中血液周期振荡流的切应力分布   总被引:1,自引:0,他引:1  
刘宝玉  柳兆荣 《力学季刊》2002,23(3):293-301
本文通过求解圆管内血液振荡流的基本方程,求得圆管内血液流的压力梯度与切应力之间的关系式。在此基础上,详细讲座了圆管中轴向流速和切变率谐波的变化规律,指出流速谐波和切变率谐波的幅值都将随着谐波次数的增大而逐渐减小。为了使所得结果便于应用。文章通过管轴向中心线流速与压力梯度之间的关系式,进一步给出一种利用管轴向中心线流速计算管内切应力分布的简便方法。该方法用于检测活体血管内血液振荡流的切应力分布,具有操作简单,精度较高的优点。最后,以人体颈动脉为例,讨论血液周期振荡流的切应力的分布特性。发现在任意时刻,除了邻近管壁处切应力急剧增大到一定数值之外,沿管截面切应力分布相当均匀且接近于零,呈现出与定常流不同的切应力分布特征。  相似文献   

6.
By means of a cone and plate rheometer the relaxation of the shear stress and the first normal stress difference in polymer liquids upon cessation of a constant shear rate were examined. The experiments were conducted mostly in a high shear rate region of relevance for the processing of these materials. The relaxation behavior at these shear rates can only be measured accurately under extremely precise specifications of the rheometer. To determine under which conditions the integral normal thrust is a convenient measure for the relaxing local first normal stress difference the radial distribution of the pressure in the shear gap was measured. The shape of relaxation of both the shear stress and the first normal stress difference could be closely approximated for the entire measured shear rate and time range by a two parameter statistical function. In the range of measured shear rates, one of the parameters, the standard deviationS, is equal for the shear and the normal stress, and is independent of the shear rate within the limit of experimental error. The second parameter, the mean relaxation timet 50, of the shear stress andt 50, of the first normal stress difference, can be calculated approximately from the viscosity function and only a single relaxation experiment.  相似文献   

7.
It has been demonstrated that strong electrical noise is generated during capillary flow of an alkalized latex dispersion of copolymer carrying carboxylic groups where the dispersion particles are swollen. On the other hand, if the content of dissociated carboxylic groups in the alkalized dispersion is higher and swelling turns into decomposition of the particles to macromolecules or their aggregates, the thermal (Nyquist) noise at rest remains unaffected by flow, even if the flow curves are similar to corresponding ones when strong noise is generated. Viscosities and first normal stress differences measured at lower shear stresses suggest that the occurrence of noise generation during flow is affected, not only by pseudoplasticity and elasticity of the liquid, but also by its microstructure.  相似文献   

8.
Mechanical and optical rheometric measurements are reported on solutions of polystyrene dissolved in dioctyl phthalate, a solution that can undergo an apparent phase separation upon the application of shear. Solutions prepared using three molecular weights ranging from one to four million were studied. Time-temperature superposition was observed to apply for these solutions up to and including the onset of an apparent shear thickening of the steady shear and first normal stresses. Optical measurements employing turbidity and scattering dichroism determined that concentration fluctuations were enhanced by flow and grew parallel to the vorticity axis below the critical velocity gradient for the onset of the apparent shear thickening effect. Prior to the onset of thickening, the fluctuations were observed to rearrange and orient parallel to the flow direction. Second normal stress difference measurements indicate these solutions have a negative ratio of the second to the first normal stress differences. It is interesting to point out that the ratio tends to zero in the vicinity of the shear rate range at which shear thickening occurs.  相似文献   

9.
Superposition of oscillatory shear imposed from the boundary and through pressure gradient oscillations and simple shear is investigated. The integral fluid with fading memory shows flow enhancement effects due to the nonlinear structure. Closed-form expressions for the change in the mass transport rate are given at the lowest significant order in the perturbation algorithm. The elasticity of the liquid plays as important a role in determining the enhancement as does the shear dependent viscosity. Coupling of shear thinning and elasticity may produce sharp increases in the flow rate. The interaction of oscillatory shear components may generate a steady flow, either longitudinal or orthogonal, resulting in increases in flow rates akin to resonance, and due to frequency cancellation, even in the absence of a mean gradient. An algorithm to determine the constitutive functions of the integral fluid of order three is outlined.Nomenclature A n Rivlin-Ericksen tensor of order . - A k Non-oscillatory component of the first order linear viscoelastic oscillatory velocity field induced by the kth wave in the pressure gradient - d Half the gap between the plates - e x, e z Unit vectors in the longitudinal and orthogonal directions, respectively - G(s) Relaxation modulus - G History of the deformation - Stress response functional - I() Enhancement defined as the ratio of the frequency dependent part of the discharge to the frequencyindependent part of it at the third order - I *() Enhancement defined as the ratio of the increase in discharge due to oscillations to the total discharge without the oscillations - k Power index in the relaxation modulus G(s) - k i –1 Relaxation times in the Maxwell representation of the quadratic shear relaxation modulus (s 1, s 2) - m i –1, n i –1 Relaxation times in the Maxwell representations of the constitutive functions 1(s 1,s 2,s 3) and 4 (s 1, s 2,s 3), respectively - P Constant longitudinal pressure gradient - p Pressure field - mx ,(3) nz ,(3) Mean volume transport rates at the third order in the longitudinal and orthogonal directions, respectively - 0,(3), 1,(3) Frequency independent and dependent volume transport rates, respectively, at the third order - s = t- Difference between present and past times t and   相似文献   

10.
The viscoelastic behavior of polymeric systems based upon the Leonov model has been examined for (i) the stress growth at constant strain rate, (ii) the stress growth at constant speed and (iii) the elastic recovery in elongational flow. The model parameters have been determined from the available rheological data obtained either in steady shear flow (shear viscosity and first normal-stress difference as a function of shear rate) or oscillatory flow (storage and loss moduli as a function of frequency in the linear region) or from extensional flow at very small strain rates (time-dependent elongation viscosity in the linear viscoelastic limit). In addition, the effect of the parameter characterizing the strain-hardening of the material during elongation has also been studied. The estimation of this parameter has been based upon the structural characteristics of the polymer chain which include the critical molecular weight and molecular weight of an independent segment. Five different polymer melts have been considered with varying number of modes (maximum four modes). Resulting predictions are in fair agreement with corresponding experimental data in the literature.  相似文献   

11.
A novel geometry for generating a viscometric flow presents advantages of both cone and plate and parallel plate geometries, regarding uniform shear field and adjustable range of measurement. Kinematics and dynamics of the generated flow have been described mathematically utilizing an orthogonal curvilinear coordinate system based on the shapes of the shearing surfaces which are similar to the surface that generates the flow. Simple equations that allow the calculation of quantities of experimental interest in the rheological characterization of liquid materials, namely, shear rate, shear stress and two normal stress differences, have also been derived.The geometry, called pseudosphere, was tested with two types of fluids (Newtonian and pseudoplastic). Results show that the geometry can be used with low viscosity liquids (Newtonian liquids) by only adjusting the gapH. The behavior of pseudoplastic fluids for both low and moderately high viscosity could also be studied with this geometry. Very reproducible results were obtained when compared with those obtained with cone and plate geometry. Regions of lower shear rate could be studied using only the pseudosphere geometry.  相似文献   

12.
A technique of yield stress investigation based upon the combined use of two devices (an applied stress rheometer and an instrument for measuring the propagation velocity of small amplitude, torsional shear waves) is described. Investigations into the low shear rate rheological properties of illitic suspensions are reported for shear rates, typically, in the range 10–4— 10–1 s–1 under applied stresses in the range 0.01 — 10 Nm–2 and involving shear strains between 10–1 and 10–4. Results are presented which demonstrate that the technique does not invoke the excessive structural disruption of material associated with applied shear rate based methods (direct and otherwise) and the widely encountered problem of wall slip at the surface of rotational measuring devices is avoided using miniature vane geometries. Results are compared with those obtained using smooth-walled cyclindrical measuring devices in both applied stress and applied shear rate instruments.Yield measurements are considered in relation to the structural properties of the undisturbed material state and shear moduli obtained by studying the propagation of small amplitude (10–5 rad), high frequency (~ 300 Hz) torsional shear waves through the test materials are reported. Experimental techniques and instrument modifications to permit these measurements are described.  相似文献   

13.
Viscosity, modulus, and yield stress for 0–6 wt% aqueous solutions of Carbopol 941 were investigated using constant shear rate, constant shear stress, and dynamic oscillatory experiments. The microgel character of the polymer was evident from the solid-like behavior of the solutions above 1 wt%. Yield stress increased with concentration, but yield occurred at a critical shear strain of 40%, independent of concentration. The static stress-strain relationship became non-linear at ~ 25% strain, in fair agreement with the onset of non-linear response in the storage modulus at ~ 10% strain. Small strain moduli from static and low frequency measurements agreed rather well; modulus values obtained from the recoverable strain after yielding were 30–40% smaller. Solutions flowed at near-constant stress in the low shear rate regime; at higher rates the stress increases with shear rate more rapidly. The viscosity did not obey the Cox-Merz rule. Steady-state viscosity scaled with polymer concentration to the 3/4 power. Results were interpreted using a cellular, deformable sphere model for the polymer, in analogy to emulsions and foams.  相似文献   

14.
A viscoelastic plastic model for suspension of small particles in polymer melts has been developed. In this model, the total stress is assumed to be the sum of stress in the polymer matrix and the filler network. A nonlinear viscoelastic model along with a yield criterion were used to represent the stresses in the polymer matrix and the filler network, respectively. The yield function is defined in terms of differential equations with an internal parameter. The internal parameter models the evolution of structure changes during floc rupture and restoration. The theoretical results were obtained for steady and oscillatory shear flow and compared with experimental data for particle filled thermoplastic melt. The experimental data included the steady state shear strress over a wide range of shear rates, the transient stress in a start up shear flow, stress relaxation after cessation of a steady state shear flow, the step shear and the oscillatory shear flow at various amplitudes.  相似文献   

15.
The linear viscoelasticty of Leslie-Ericksen monodomain liquid crystals subjected to a bend distortion through a small amplitude oscillatory shear flow driven by harmonic wall stress is analyzed, using numerical and asymptotic methods. The viscoelastic material functions were derived using a new scaling approach that extracts the material parameters that control superposition. Small and high frequency superposition schemes for linear viscoleasticity were derived. The schemes were successfully applied to collapse the predicted loss and storage linear viscoelastic moduli of seven experimental data sets. Comparisons between different shear flows (simple shear and capillary Poiseuille) and different director distortion modes (splay and bend) shows that the superposition schemes are applicable to shear flows in any single director distortion mode.  相似文献   

16.
The paper describes pertinent laboratory tests to characterize the rheological properties of paper coatings with regard to blade coating over a very wide range of shear rates in both transient and steady-state shear flows. Shear rates as high as 106 s–1 can be reached by means of a gas-driven capillary rheometer. Examples for the evaluation of end effects, wall effects, and coating thixotropy are given. A stiff and fast Couette rheometer is used to determine flow curves and the shear stress overshoot in step shear rate tests. The primary normal stress difference can be measured up to 104 s–1 by means of a high shear cone-plate rheometer with piezo transducer. A correct evaluation of the measurements has to take into account inertia contributions to the normal force. First results using a sinusoidal modulation of the shear rate are presented.Paper presented at: International Symposium on Pigment Coating Structure and Rheology, Helsinki, Febr. 8–9, 1989  相似文献   

17.
Filled polymeric liquids often exhibit apparent yielding and shear thinning in steady shear flow. Yielding results from non-hydrodynamic particle—particle interactions, while shear thinning results from the non-Newtonian behavior of the polymer melt. A simple equation, based on the linear superposition of two relaxation mechanisms, is proposed to describe the viscosity of filled polymer melts over a wide range of shear rates and filler volume fraction.The viscosity is written as the sum of two generalized Newtonian liquid models. The resulting equation can describe a wide range of shear-thinning viscosity curves, and a hierarchy of equations is obtained by simplifying the general case. Some of the parameters in the equation can be related to the properties of the unfilled liquid and the solid volume fraction. One adjustable parameter, a yield stress, is necessary to describe the viscosity at low rates where non-hydrodynamic particle—particle interaction dominate. At high shear rates, where particle—particle interactions are dominated by interparticle hydrodynamics, no adjustable parameters are necessary. A single equation describes both the high and low shear rate regimes. Predictions of the equation closely fit published viscosity data of filled polymer melts. n power-law index - n 1,n 2 power-law index of first (second) term - shear rate - steady shear viscosity - 0 zero-shear rate viscosity - 0, 1, 0, 2 zero-shear rate viscosity of first (second) term - time constant - 1, 2 time constant of first (second) term - µ r relative viscosity of filled Newtonian liquid - 0 yield stress - ø solid volume fraction - ø m maximum solid volume fraction  相似文献   

18.
Reasonable agreement is found between values of the first normal-stress differenceN 1 for samples of D2, a polyisobutylene/decalin solution, measured in steady shear flow using three different instruments: a Weissenberg Rheogoniometer (a cone-plate rotational rheometer), a Torsional Balance (plate-plate rotational) Rheometer, and a Stressmeter (a transverse-slot slit-die rheometer). Viscosity values are also in reasonable agreement. Ranges of variables common to at least two rheometers include values of shear stress up to 3,700 Pa and shear rate up to 20,700 s–1 near 25 °C. The agreement supports the approximate validity of the semi-empirical HPBL equation used to calculateN 1 from Stressmeter data over a range of shear rates up to 20,700 s–1 near 25 °C. Time-temperature superposition behavior exhibited by Stressmeter data at temperatures in the range 21 °C to 111 °C suggest that the range of validity of the Stressmeter method for determiningN 1 approximately may extend up to shear rates of 290,000 s–1 at 111 °C.  相似文献   

19.
A theory of extrudate swell for short, intermediate or long dies is presented. In our experiment, we consider that the swelling phenomenon is mainly due to the recoverable elongational strain induced by the converging flow at the die entrance, as well as by recoverable shear strain originating within the die. From these concepts, an equation has been derived for the quantitative prediction of extrudate swell from the elastic material properties such as the entrance pressure drop, the relaxation modulus and the recoverable shear strain. Excellent agreement is found between predicted and measured values of extrudate swell obtained on commercial polystyrene melt, using capillaries of length-to-diameter ratios ranging from 1 to 20 and in a wide range of shear rates.  相似文献   

20.
Kinetic theory of dilute macromolecular solutions is applied to pressure driven flow in a small channel where wall- (and interfacial) layers have to be reckoned with. The complete rheology is studied. It turns out that for very small channels both the shear stress and the normal stress are an order of magnitude larger than corresponding quantities in simple shear. On the other hand, when the channel is so wide that the wall layers are very thin in comparison, agreement with results appropriate for simple shear is found. The volume flow rate-pressure difference relation is derived and compared to the prediction which utilizes the slip velocity concept. For very small channels, this concept is five orders of magnitude off, but reproduces asymptotically correct results for very large channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号