首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Stress calculation formulae for a ring have been obtained by using Airy stress function of the plane strain field with the decomposition of the solutions for normal stresses of Airy biharmonic equation into two parts when it is loaded under two opposite inside forces along a diameter. One part should fulfill a constraint condition about normal stress distribution along the circumference at an energy valley to do the minimum work. Other part is a stress residue constant. In order to verify these formulae and the computed results, the computed contour lines of equi-maximal shear stresses were plotted and quite compared with that of photo-elasticity test results. This constraint condition about normal stress distribution along circumference is confirmed by using Greens’ theorem. An additional compression exists along the circumference of the loaded ring, explaining the divorcement and displacement of singularity points at inner and outer boundaries.  相似文献   

2.
The thermal properties of a nanostructured semiconductor are affected by multi-physical fields,such as stress and electromagnetic fields,causing changes in temperature and strain distributions.In this work,the influence of stress-dependent thermal conductivity on the heat transfer behavior of a GaN-based nanofilm is investigated.The finite element method is adopted to simulate the temperature distribution in a prestressed nanofilm under heat pulses.Numerical results demonstrate the effect of stress field on the thermal conductivity of GaN-based nanofilm,namely,the prestress and the thermal stress lead to a change in the heat transfer behavior in the nanofilm.Under the same heat source,the peak temperature of the film with stress-dependent thermal conductivity is significantly lower than that of the film with a constant thermal conductivity and the maximum temperature difference can reach 8.2 K.These results could be useful for designing GaN-based semiconductor devices with higher reliability under multi-physical fields.  相似文献   

3.
The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed and confining pressure state is regarded as low/medium/high state. A generalized cup modeling is introduced by a coupled deviatoric shearing, pore collapse and damage mechanism within thermodynamic framework. A series of numerical simulations are performed for the considered cement paste and concrete. Comparisons between numerical predictions and experimental results show that the proposed model is able to describe the main features of mechanical behavior under large range of compression state.  相似文献   

4.
The present work deals with the computation of the gas-solid two-phase flow pressure drop across thin and thick orifices for a vertically downward flow configuration at the higher limits of a dilute phase flow situation(0.01≤αs,in≤0.10).The Eulerian-Eulerian(two-fluid)model has been used in conjunction with the kinetic theory of granular flow with a four-way coupling approach.The validation of the solution process has been performed by comparing the computational result with the existing experimental data.It is observed that the two-phase flow pressure drop across the orifice increases with an increase in the thickness of the orifice,and the effect is more prominent at higher solid loading.The pressure drop is found to increase with an increase in the solid volume fraction.An increase in the Reynolds number or the area ratio increases the pressure drop.An increase in the size of the particles reduces the pressure drop across the orifice at both small and relatively large solid volume fractions.Finally,a two-phase multiplier has been proposed in terms of the relevant parameters,which can be useful to evaluate the gas-solid two-phase flow pressure drop across the orifice and can subsequently help to improve the system performance.  相似文献   

5.
6.
为了评估弹体飞行中产生的气动热对弹头引信的影响,采用计算流体动力学(CFD)方法对某火箭弹标准外形引信体在飞行条件下的气动加热过程进行了数值计算与分析.计算中,将获得的某火箭弹实际弹道参数进行了分段线性拟合,得到了计算域入口处的速度、温度、压强与时间的函数关系;结合分析对象的特点,采用结构化网格、远场压力边界条件、k-ε模型,利用有限体积法、耦合求解法模式、二阶迎风格式进行求解,得出了某火箭弹标准外形引信在弹道中不同时刻的温度场变化规律.计算结果与遥测试验结果的比较表明:两者变化的趋势及量值大小相吻合,两者的最大误差为13.0%,满足工程应用要求.  相似文献   

7.
Open-sided draft tubes provide an optimal gas distribution through a cross flow pattern between the spout and the annulus in conical spouted beds.The design,optimization,control,and scale-up of the spouted beds require precise information on operating and peak pressure drops.In this study,a multi-layer perceptron(MLP)neural network was employed for accurate prediction of these hydrodynamic characteristics.A relatively huge number of experiments were accomplished and the most influential dimensionless groups were extracted using the Buckingham-pi theorem.Then,the dimensionless groups were used for developing the MLP model for simultaneous estimation of operating and peak pressure drops.The iterative constructive technique confirmed that 4-14-2 is the best structure for the MLP model in terms of absolute average relative deviation(AARD%),mean square error(MSE),and regression coefficient(R2).The developed MLP approach has an excellent capacity to predict the transformed operating(MSE=0.00039,AARD%=1.30,and R2=0.76099)and peak(MSE=0.22933,AARD%=11.88,and R2=0.89867)pressure drops.  相似文献   

8.
Computational fluid dynamics(CFD)has become a valuable tool to study the complex gas-solid hydrodynamics in the circulating fluidized bed(CFB).Based on the two fluid model(TFM)under the Eulerian-Eulerian framework and the dense discrete phase model(DDPM)under the Eulerian-Lagrangian framework,this work conducts the comparative study of the gas-solid hydrodynamics in a CFB riser by these two different models.Results show that DDPM could be used to predict gas-solid hydrodynamics in the circulating fluidized bed,and there are differences between TFM and DDPM,especially in the radial distribution profiles of solid phase.Sensitivity analysis results show that the gas-solid drag model exhibits significant effects on the results for both the two models.The specularity coefficient and the restitution coefficient in the TFM,as well as the reflection coefficient and the parcel number in the DDPM,exhibit less impact on the simulated results.  相似文献   

9.
Hierarchical defects are defined as adjacent defects at different length scales.Involved are the two scales where the stress field distribution is interrelated.Based on the complex variable method and conformal mapping,a multiscale framework for solving the problems of hierarchical defects is formulated.The separated representations of mapping function,the governing equations of potentials,and the stress field are subsequently obtained.The proposed multiscale framework can be used to solve a variety of simplified engineering problems.The case in point is the analytical solution of a macroscopic elliptic hole with a microscopic circular edge defect.The results indicate that the microscopic defect aggregates the stress concentration on the macroscopic defect and likely leads to global propagation and rupture.Multiple micro-defects have interactive effects on the distribution of the stress field.The level of stress concentration may be reduced by the coalescence of micro-defects.This work provides a unified method to analytically investigate the influence of edge micro-defects within the scope of multiscale hierarchy.The formulated multiscale approach can also be potentially applied to materials with hierarchical defects,such as additive manufacturing and bio-inspired materials.  相似文献   

10.
A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model.The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle,and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel.Several nominal variables are introduced to simplify the differential governing equation,integral constitutive equation,and boundary conditions.Rather than transforming the constitutive equation from integral to differential forms,the Laplace transformation is used directly to solve the integro-differential equations.The explicit expression for nominal torsional rotation and torque contains four unknown constants,which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation.A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped(CC)FGNT under torsional constraints and a clamped-free(CF)FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号