首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonlinear rheological behavior of short glass fiber suspensions has been investigated in this work by rotational rheometry and flow visualization. A Newtonian and a Boger fluid (BF) were used as suspending media. The suspensions exhibited shear thinning in the semidilute regime and weaker shear thinning in the transition to the concentrated one. Normal stresses and relative viscosity were higher for the BF suspensions than for the Newtonian ones presumably due to enhanced hydrodynamic interactions resulting from BF elasticity. In addition, relative viscosity of the suspensions increased rapidly with fiber content, suggesting that the rheological behavior in the concentrated regime is dominated by mechanical contacts between fibers. Visualization of individual fibers and their interactions under flow allowed the detection of aggregates, which arise from adhesive contacts. The orientation states of the fibers were quantified by a second order tensor and fast Fourier transforms of the flow field images. Fully oriented states occurred for shear rates around 20 s − 1. Finally, the energy required to orient the fibers was higher in step forward than in reversal flow experiments due to a change in the spatial distribution of fibers, from isotropic to planar oriented, during the forward experiments.  相似文献   

2.
In order to eventually predict the behavior of long fiber suspensions in complex flows commonly found in processing operations, it is necessary to understand their rheology and its connection to the evolution of fiber orientation and configuration in well defined flows. In this paper we report the transient behavior at the startup of shear flow of a polymer melt containing long glass fibers with a length (L) >1 mm, using a sliding plate rheometer (SPR). The operation of the SPR was confirmed by comparing the transient shear viscosity (η+) for a polymer melt and a melt containing short glass fibers (L < 1 mm) with measurements obtained from a cone-and-plate device, using a modified sample geometry that was designed to avoid wall effects. For the long fiber systems, measurements could only be obtained in the SPR because these systems would not stay within the gap of the rotational rheometer. Transient stress growth behavior of the long fiber systems was obtained as a function of shear rate and fiber concentration for samples prepared with three different initial orientations. Results showed that, unlike short fiber systems (with a random planar initial orientation) that usually exhibit a single overshoot peak followed by a steady state, η+ of the long fiber suspensions often passed through multiple transient regions, depending on the fiber concentration and applied shear rate. Additionally, η+ of the long fiber suspensions was found to be highly dependent on the initial orientation of the sheared samples. Finally, the initial and final fiber orientations of the long glass fiber samples were measured and used to initiate an explanation of the viscosity behavior. The results obtained in this research will be useful for future assessment of a quantitative correlation between transient rheology and the evolution of fiber orientation.  相似文献   

3.
The development of flow kinematics and fiber orientation distribution from the parabolic velocity profile and isotropic orientation at the channel inlet was computed in multi-disperse suspension flow through a parallel plate channel and their predictions were compared with those of mono- and bi-disperse suspensions. A statistical scheme (orientations of a large number of fibers are evaluated from the solution of the Jeffery equation along the streamlines) was confirmed to be very useful and feasible method to analyze accurately the orientation distribution of fibers in multi-disperse fiber suspension flow as well as mono- and bi-dispersions, instead of direct solutions of the orientation distribution function of fibers or the evolution equation of the orientation tensor which involves a closure equation. It was found that the flow kinematics and the fiber orientation depend completely on both the fiber aspect-ratio and the fiber parameter for multi-disperse suspension when the fiber–fiber and fiber-wall interactions are neglected. Furthermore, the addition of large aspect-ratio fibers as well as an increase in the fiber parameter related to the large aspect-ratio fibers could suppress the complex velocity field and stress distributions which are observed in suspensions containing small aspect-ratio fibers. From a practical point of view, therefore, the mechanical and physical properties of fiber composites should be improved with an increase in the volume fraction of large aspect-ratio fibers.  相似文献   

4.
Fiber suspension flow and fiber orientation through a parallel-plate channel were numerically simulated for fiber suspensions including continuously dispersed aspect ratios from 10 to 50. In the simulations, both the fiber–fiber and fiber–wall interactions were not taken into account. A statistical scheme that proceeds by evaluating the orientation evolution of a large number of fibers from the solution of the Jeffery equation along the streamlines was confirmed to be a very useful and feasible method to accurately analyze the orientation distribution of fibers with continuously dispersed aspect ratios. For monodisperse suspensions with small-aspect-ratio fibers, flip-over or oscillation phenomenon of the orientation ellipsoid caused the wavy patterns of the velocity profile and the streamlines as well as the abrupt and complex variation of the shear stress and the normal stress difference near the channel wall as proven in one of our former works. On the other hand, continuous dispersions containing from small- to large-aspect-ratio fibers were able to induce smoother evolutions of the fiber orientation and the flow kinematics. In the processing of fiber composites, the length of suspended fibers is always continuously distributed because of fiber breakage during processing; thus, the smooth evolutions of the flow kinematics and the stress distribution can be attained.This paper was presented at the Annual Meeting of the European Society of Rheology, Grenoble, April 2005.  相似文献   

5.
A model relating the translational and rotational transport of orientation distribution function (ODF) of fibers to the gradient of mean ODF and the dispersion coefficients is proposed to derive the mean equation for the ODE Then the ODF of fibers is predicted by numerically solving the mean equation for the ODF together with the equations of turbulent boundary layer flow. Finally the shear stress and first normal stress difference of fiber suspensions are obtained. The results, some of which agree with the available relevant experimental data, show that the most fibers tend to orient to the flow direction. The fiber aspect ratio and Reynolds number have significant and negligible effects on the orientation dis- tribution of fibers, respectively. The additional normal stress due to the presence of fibers is anisotropic. The shear stress of fiber suspension is larger than that of Newtonian solvent, and the first normal stress difference is much less than the shear stress. Both the additional shear stress and the first normal stress difference increase with increasing the fiber concentration and decreasing fiber aspect ratio.  相似文献   

6.
A simple kinetic model is presented for the shear rheology of a dilute suspension of particles swimming at low Reynolds number. If interparticle hydrodynamic interactions are neglected, the configuration of the suspension is characterized by the particle orientation distribution, which satisfies a Fokker-Planck equation including the effects of the external shear flow, rotary diffusion, and particle tumbling. The orientation distribution then determines the leading-order term in the particle extra stress in the suspension, which can be evaluated based on the classic theory of Hinch and Leal (J Fluid Mech 52(4):683–712, 1972), and involves an additional contribution arising from the permanent force dipole exerted by the particles as they propel themselves through the fluid. Numerical solutions of the steady-state Fokker-Planck equation were obtained using a spectral method, and results are reported for the shear viscosity and normal stress difference coefficients in terms of flow strength, rotary diffusivity, and correlation time for tumbling. It is found that the rheology is characterized by much stronger normal stress differences than for passive suspensions, and that tail-actuated swimmers result in a strong decrease in the effective shear viscosity of the fluid.  相似文献   

7.
A hybrid lattice-Boltzmann numerical simulation method is undertaken to study the rheology of non-colloidal, rigid fibres in sheared, semidilute Newtonian suspension. The viscosity and the first normal stress difference are calculated with the combined use of numerical fibre orientation information and a corrected form of the slender body theory of Batchelor (J Fluid Mech Digit Arch 46(4):813–829, 1971). The corrections make the theory applicable in semidilute suspension flow (Shaqfeh and Fredrickson, Phys Fluids A: Fluid Dyn 2(1):7–24, 1990) with fibres of finite aspect ratio. The corrected theory within its framework, based on spacing among fibres in semidilute suspension, only considers hydrodynamic interactions among fibres and inferences that the effect of actual fibre–fibre mechanical contacts on rheological properties of such suspension systems remains inconsequential. To investigate this issue, the rheological properties of semidilute suspension were calculated directly from the numerical simulation. This approach accounted for both hydrodynamic and mechanical interactions among fibres. This direct measurement proved that the mechanical interactions increase both the relative shear viscosity and the first normal stress difference in the semidilute suspension to values which are larger than permissible within the framework of Batchelor’s theory.  相似文献   

8.
Particle-level simulation has been employed to investigate rheology and microstructure of non-spherical particulate suspensions in a simple shear flow. Non-spherical particles in Newtonian fluids are modeled as three-dimensional clusters of neutrally buoyant, non-Brownian spheres linked together by Hookean-type constraint force. Rotne–Prager correction to velocity disturbance has been employed to account for far-field hydrodynamic interactions. An isolated rod-like particle in simple shear flow exhibits a periodic orientation distribution, commonly referred to as Jeffery orbit. Lubrication-like repulsive potential between clusters have been included in simulation of rod-like suspensions at various aspect ratios over dilute to semi-dilute volume fractions. Shear viscosity evaluated by orientation distribution qualitatively agrees with one obtained by direct computation of shear stress.  相似文献   

9.
A numerical model for predicting the flow and orientation state of semi-dilute, rigid fiber suspensions in a tapered channel is presented. The effect of the two-way flow/fiber coupling is investigated for low Reynolds number flow using the constitutive model of Shaqfeh and Fredrickson. An orientation distribution function is used to describe the local orientation state of the suspension and evolves according to a Fokker–Plank type equation. The planar orientation distribution function is determined along streamlines of the flow and is coupled with the fluid momentum equations through a fourth-order orientation tensor. The coupling term accounts for the two-way interaction and momentum exchange between the fluid and fiber phases. The fibers are free to interact through long range hydrodynamic fiber–fiber interactions which are modeled using a rotary diffusion coefficient, an approach outlined by Folgar and Tucker. Numerical predictions are made for two different orientation states at the inlet to the contraction, namely a fully random and a partially aligned fiber orientation state. Results from these numerical predictions show that the streamlines of the flow are altered and that velocity profiles change from Jeffery–Hamel, to something resembling a plug flow when the fiber phase is considered in the fluid momentum equations. This phenomenon was found when the suspension enters the channel in either a pre-aligned, or in a fully random orientation state. When the suspension enters the channel in an aligned orientation state, fiber orientation is shown to be only marginally changed when the two-way coupling is included. However, significant differences between coupled and uncoupled predictions of fiber orientation were found when the suspension enters the channel in a random orientation state. In this case, the suspension was shown to align much more quickly when the mutual coupling was accounted for and profiles of the orientation anisotropy were considerably different both qualitatively and quantitatively.  相似文献   

10.
The Folgar–Tucker model, which is widely-used to predict fiber orientation in injection-molded composites, accounts for fiber–fiber interactions using isotropic rotary diffusion. However, this model does not match all aspects of experimental fiber orientation data, especially for composites with long discontinuous fibers. This paper develops a fiber orientation model that incorporates anisotropic rotary diffusion. From kinetic theory we derive the evolution equation for the second-order orientation tensor, correcting some errors in earlier treatments. The diffusivity is assumed to depend on a second-order space tensor, which is taken to be a function of the orientation state and the rate of deformation. Model parameters are selected by matching the experimental steady-state orientation in simple shear flow, and by requiring stable steady states and physically realizable solutions. Also, concentrated fiber suspensions align more slowly with respect to strain than models based on Jeffery's equation, and we incorporate this behavior in an objective way. The final model is suitable for use in mold filling and other flow simulations, and it gives improved predictions of fiber orientation for injection molded long-fiber composites.  相似文献   

11.
The structure and orientation dynamics of sepiolite clay fibers about 1,000 nm long and 10 nm thick, suspended in an aqueous poly(ehtylene oxide) matrix of 105 g/mol molecular mass, have been studied under control extensional and shear flow. A new extensional flow cell developed at the “Laboratoire de Rhéologie” and the combined rheology and small angle X-ray scattering (Rheo-SAXS) setup available at the European Synchrotron Radiation Facility have allowed access to in situ and time-resolved fiber orientations and structure properties in the volume of suspensions under flow. In the volume fractions and shear rate domains for which the suspensions exhibit shear-thinning properties, two regimes of orientation separated by a critical strain rate have been identified under extensional flow.  相似文献   

12.
We study the flow-induced orientation dynamics of semiflexible fibers in dilute fiber suspensions. Starting from the equations of motion for a two-rod model of flexible fibers in Stokes flow, the Smoluchowski equation for a connected monomer orientation distribution function is derived. We then obtain a set of equations for the time dependence of the first and second moments of the orientation distribution function, thus extending the Folgar Tucker equations for short rigid fiber suspensions to flexible fiber suspensions. The resulting generalized equations for the orientation dynamics of a suspension of flexible fibers are solved for simple channel flow. It is shown that all qualitative effects of bending and straightening of fibers and their influence on the orientation of flexible fibers are captured within our model. A scalar measure for the distribution of bending in a flow is introduced, which allows to detect the degree of bending of fibers. Paper was presented at the 3rd Annual Rheology Conference, AERC 2006, April 27–29, 2006, Crete, Greece.  相似文献   

13.
As seen in textbooks of polymer physics, a linear polymer chain can be modeled as a filament of connected beads. This concept can also be adapted to fibers and, for example, flexible fibers can be modeled by considering a stretch force, bending and torsion torques with a non-slip condition between adjacent beads, following the particle simulation method. In predicting fiber motions and their relating rheological properties, the importance of hydrodynamic interactions should be analyzed, so in this work we study the effect of hydrodynamic interactions on the behavior of a single flexible fiber under shear using Stokesian dynamics simulation with a 11N × 11N mobility matrix, where N is the aspect ratio of the fiber. Our results indicate that hydrodynamic interaction becomes significant when the fiber is highly flexible.  相似文献   

14.
IntroductionFlowoffibresuspensionshasbeenveryfamiliarinmanyindustrialfields.Fibreadditivesplayanimportantroleindragreductioninmanytypesofflow[1- 3].Inthesuspensions,somebehavioroftheflowmaybealteredbythefibres.Oneoftheimportantexamplesisthehydrodynamicsta…  相似文献   

15.
Summary The steady shear flow properties of suspensions of vinylon fibers in silicone oil were measured by means of a cone-plate type rheometer. Three kinds of vinylon fibers used had no distributions of length and were more flexible than glass fibers and the like. The content of the fibers ranged from 0 to 7 wt.%. Shear viscosity, the first normal-stress difference, yield stress, and relative viscosity were discussed. Shear viscosity and relative viscosity increased with the fiber concentration and the aspect ratio, and depended upon the shear rate. The applicability of Ziegel's equation of viscosity for fiber suspensions was investigated. The first normal-stress difference increased with the fiber concentration, aspect ratio, and shear rate and its relative increase was much larger than for shear stress and viscosity depending on the properties of the characteristic time, The yield stress could be determined by Casson plots for large aspect ratio fiber suspensions even in low concentration comparing with the suspensions of spherical particles or powder. The influence of the flexibility of the fibers for the rheological properties of the fiber suspensions can not be ignored.With 12 figures and 2 tables  相似文献   

16.
Summary The rheological properties of vinylon fiber suspensions in polymer solutions were studied in steady shear flow. Shear viscosity, first normal-stress difference, yield stress, relative viscosity, and other properties were discussed. Three kinds of flexible vinylon fibers of uniform length and three kinds of polymer solutions as mediums which exhibited remarkable non-Newtonian behaviors were employed. The shear viscosity and relative viscosity ( r ) increased with the fiber content and the aspect ratio, and depended upon the shear rate. Shear rate dependence of r was found only in the low shear rate region. This result was different from that of vinylon fiber suspensions in Newtonian fluids. The first normal-stress difference increased at first slightly with increasing fiber content but rather decreased and showed lower values for high content suspensions than that of the medium. A yield stress could be determined by using a modified equation of Casson type. The flow properties of the fiber suspensions depended on the viscosity of the medium in the suspensions under consideration.With 16 figures and 1 table  相似文献   

17.
A numerical simulation of multiple flexible fibers in suspension in Newtonian simple shear flow is presented. The method used is similar to those of previous recent simulation works by Fan et al. [J. Non-Newtonian Fluid Mech. 74 (1998) 113] and Yamane et al. [J. Non-Newtonian Fluid Mech. 54 (1994) 405], however, the method has been modified to allow a small amount of bending and torsion in the fibers. A restoring moment acts to straighten the fibers as they interact in the flow.It is demonstrated that this simulation can be used to extract basic rheological information about the suspension including fiber orientations and suspension viscosity. The viscosity of semi-concentrated to concentrated flexible fiber suspensions are shown to increase by a magnitude of the order 7–10% greater than the equivalent rigid fiber suspension tested. This is in qualitative agreement with previous experimental work by Goto et al. [Rheologica Acta 25 (1986) 119] and Blakeney [J. Colloid Interface Sci. 22 (1966) 324]. The implication is that any constitutive relation involving particulate suspensions described by orientation vectors may quantitatively underestimate suspension viscosity, particularly for fibers of large aspect ratio, or low Young’s modulus, whereby the tendency to flex is greater [Rheologica Acta 25 (1986) 119]. If particulate deformation were accounted for (by whatever means) in the existing constitutive relationship, predictions of bulk suspension parameters such as viscosity should be noticeably improved. A method is developed to modify an existing rigid-fiber viscosity to an equivalent flexible fiber viscosity, hence improving viscosity prediction ability.  相似文献   

18.
Velocity profile of fiber suspension flow in a rectangular channel is measured by pulsed ultrasonic Doppler velocimetry (PUDV), and the effect of fiber concentration and Reynolds number on the shape of the velocity profile is investigated. Five types of flow behavior are observed when fiber concentration increases or flow rate decreases progressively. The turbulent velocity profiles of fiber suspension can be described by a correlation with fiber concentration, nl3, and Reynolds number, Re as the main parameters. The presence of fiber in the suspension will reduce the turbulence intensity and thus reduce the turbulent momentum transfer. On the other hand, fibers in the suspension have the tendency to form fiber networks, which will increase the momentum transfer. The relative contribution of these two types of momentum flux will determine the final shape of the velocity profile.  相似文献   

19.
Flow-induced fiber orientation and concentration distributions were measured in a concentrated fiber suspension (CFS) and a dilute one (DFS). The channel has a thin slit geometry containing a circular cylinder. In the previous work, many researchers have qualitatively studied fiber orientation and concentration distributions in injection-molded products of fiber-reinforced plastics. In the present work, however, they are quantitatively estimated by direct observation of fibers in the concentrated suspension flow. For the CFS, some fibers rotate in an expansion part between the channel wall and the circular cylinder, and the fiber orientation becomes almost random state. On the other hand, fibers are perfectly aligned along the flow direction owing to the elongational flow near the centerline downstream of the cylinder. The fiber concentration has a flat distribution except near the channel wall and the centerline. For the DFS a minimum in the fiber concentration distribution was clearly observed on the centerline, and two peaks beside the centerline and near the channel wall. This characteristic distribution is caused by the fiber-wall and fiber-cylinder interactions. It is found that the obstacle such as the circular cylinder in the channel significantly affects the fiber orientation downstream of the obstacle for the CFD, while it affects the fiber concentration distribution for the DFS.  相似文献   

20.
Steerable filters are concluded to be useful in order to determine the orientation of fibers captured in digital images. The fiber orientation is a key variable in the study of flowing fiber suspensions. Here, digital image analysis based on a filter within the class of steerable filters is evaluated for suitability of finding the position and orientation of fibers suspended in flowing suspensions. In sharp images with small noise levels, the steerable filter succeeds in determining the orientation of artificially generated fibers with well-defined angles. The influence of reduced image quality on the orientation has been quantified. The effect of unsharpness and noise is studied and the results show that the error in orientation is less than 1° for moderate levels. Images from two flow cases, one laminar shear flow and one turbulent, are also analyzed. The fiber orientation distribution is determined in the flow-vorticity plane. For the laminar case a comparison is made to a robust, but computationally more expensive, method involving convolutions with an oriented elliptic filter. A good agreement is found when comparing the resulting fiber orientation distributions obtained with the two methods. For the turbulent case, it is demonstrated that correct results are obtained and that the method can handle overlapping fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号