首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A three-dimensional discrete element model of the connective type is presented. Moreover, a three- dimensional numerical analysis code, which can carry out the transitional process from connective model (for continuum) to contact model (for non-continuum), is developed for simulating the mechanical process from continuum to non-continuum. The wave propagation process in a concrete block (as continuum) made of cement grout under impact loading is numerically simulated with this code. By comparing its numerical results with those by LS-DYNA, the calculation accuracy of the model and algorithm is proved. Furthermore, the failure process of the concrete block under quasi-static loading is demonstrated, showing the basic dynamic transitional process from continuum to non-continuum. The results of calculation can be displayed by animation. The damage modes are similar to the experimental results. The two numerical examples above prove that our model and its code are powerful and efficient in simulating the dynamic failure problems accompanying the transition from continuum to non-continuum. It also shows that the discrete element method (DEM) will have broad prospects for development and application.  相似文献   

2.
Based on the theory of continuum damage mechanics,a bi-variable damage mechanics model is developed,which,according to thermodynamics,is accessible to derivation of damage driving force,damage evolution equation and damage evolution criteria. Furthermore,damage evolution equations of time rate are established by the generalized Drucker’s postulate. The damage evolution equation of cycle rate is obtained by integrating the time damage evolution equations,and the fatigue life prediction method for smooth specimens under repeated loading with constant strain amplitude is constructed. Likewise,for notched specimens under the repeated loading with constant strain amplitude,the fatigue life prediction method is obtained on the ground of the theory of conservative integral in damage mechanics. Thus,the material parameters in the damage evolution equation can be obtained by reference to the fatigue test results of standard specimens with stress concentration factor equal to 1,2 and 3.  相似文献   

3.
An accurate and efficient numerical method for solving the crack-crack interaction problem is presented. The method is mainly by means of the dislocation model, stress superposition principle and Chebyshev polynomial expansion of the pseudo-traction. This method can be applied to compute the stress intensity factors of multiple kinked cracks and multiple rows of periodic cracks as well as the overall strains of rock masses containing multiple kinked cracks under complex loads. Many complex computational examples are given. The dependence of the crack-crack interaction on the crack configuration, the geometrical and physical parameters, and loads pattern, is investigated. By comparison with numerical results under confining pressure unloading, it is shown that the crack-crack interaction under axial-dimensional unloading is weaker than those under confining pressure unloading. Numerical results for single faults and crossed faults show that the single faults are more unstable than the crossed faults. It is found from numerical results for different crack lengths and different crack spacing that the interaction among kinked cracks decreases with an increase in length of the kinked cracks and the crack spacing under axial-dimensional unloading.  相似文献   

4.
The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods. First, cement mortars are fabricated with the ratio of water to cement of 0.4, 0.6, and 0.8. Secondly, the expansion of specimen immerged in sulphate solution is measured at different times. Thirdly, a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method. In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account. Finally, the numerical calculation is results indicate that the model perfectly describes performed. The numerical and experimental the expansion of the cement mortar.  相似文献   

5.
Based on elasto-plasticity and damage mechanics, a double-medium constitutive model of geological material under uniaxial tension and compression was presented, on the assumption that rock and soil materials are the pore-fracture double-medium, and porous medium has no damage occurring, while fracture medium has damage occurring with load. To the implicit equation of the model, iterative method was adopted to obtain the complete stress-strain curve of the material. The result shows that many different distributions (uniform distribution, concentrated distribution and random distribution) of fractures in rock and soil material are the essential reasons of the daedal constitutive relations. By the reason that the double-medium constitutive model separates the material to be porous medium part, which is the main body of elasticity, and fracture medium part, which is the main body of damage, it is of important practical values and theoretical meanings to the study on failure of rock and soil or materials containing damage.  相似文献   

6.
Carbon nanotube fibers can be fabricated by the chemical vapor deposition spinning process. They are promising for a wide range of applications such as the building blocks of high-performance composite materials and micro-electrochemical sensors. Mechanical twisting is an effective means of enhancing the mechanical properties of carbon nanotube fibers during fabrication or by post processing. However, the effects of twisting on the mechanical properties remain an unsolved issue. In this paper, we present a two-scale damage mechanics model to quantitatively investigate the effects of twisting on the mechanical properties of carbon nanotube fibers. The numerical results demonstrate that the developed damage mechanics model can effectively describe the elastic and the plastic-like behaviors of carbon nanotube fibers during the tension process. A definite range of twisting which can effectively enhance the mechanical properties of carbon nanotube fiber is given. The results can be used to guide the mechanical twisting of carbon nanotube fibers to improve their properties and help optimize the mechanical performance of carbon nanotube-based materials.  相似文献   

7.
The method of developing GM(1,1) model is extended on the basis of grey system theory. Conditions for the transfer function that improve smoothness of original data sequence and decrease the revert error are given. The grey dynamic model is first combined with the transfer function to predict the leaching rate in heap leaching process. The results show that high prediction accuracy can be expected by using the proposed method. This provides a new approach to realize prediction and control of the future behavior of leaching kinetics.  相似文献   

8.
The authors have developed a new line-spring boundary element method in thepresent paper,which combines the advantage of the line-spring model with that of theboundary element method.This method reduces the three-dimension problem of thesurface cracks into a quasi-one-dimension problem and can be used to analyze thesurface cracked plate under various loading conditions.In this paper theoreticalanalyses and numerical verifications are carried out.The calculated results arereported,which indicate that the present method is efficient and can be used to analyzethe surface crack problem on a personal computer.  相似文献   

9.
The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work. The process of a shock interacting with a krypton or a SF 6 bubble is studied by the numerical method VAS2D. As a validation, the experiments of a SF 6 bubble accelerated by a planar shock were performed. The results indicate that, due to the mismatch of acoustic impedance, the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition. With respect to the same bubble, the manner of jet formation is also distinctly different under different shock strengths. The disparities of the acoustic impedance result in different effects of shock focusing in the bubble, and different behaviors of shock wave inside and outside the bubble. The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation. Moreover, the analysis of the vorticity deposition, and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation. It is concluded that the pressure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction.  相似文献   

10.
In this paper, a nonlinear and coupled constitutive model for giant magnetostrictive materials(GMM) is employed to predict the active vibration suppression process of cantilever laminated composite plate with GMM layers. The nonlinear and coupled constitutive model has great advantages in demonstrating the inherent and complicated nonlinearities of GMM in response to applied magnetic field under variable bias conditions(pre-stress and bias magnetic field).The Hamilton principle is used to derive the nonlinear and coupled governing differential equation for a cantilever laminated composite plate with GMM layers. The derived equation is handled by the finite element method(FEM) in space domain, and solved with Newmark method and an iteration process in time domain. The numerical simulation results indicate that the proposed active control system by embedding GMM layers in cantilever laminated composite plate can efficiently suppress vibrations under variable bias conditions. The effects of embedded placement of GMM layers and control gain on vibration suppression are discussed respectively in detail.  相似文献   

11.
钻井液中加入体积分数为1%~3%的钢质粒子在钻头喷嘴处高速喷出冲击岩石,实现了粒子射流冲击和钻头机械联合破岩,有效提高了破岩效率。利用瞬态非线性动力学有限元模拟软件,基于光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法,考虑流体对粒子射流冲击的影响,建立了粒子射流冲击破岩的物理模型,获得了粒子射流参数对破岩体积的影响规律,进行了室内实验验证,验证了SPH方法的有效性。结果表明:粒子射流冲击岩石表面形成规则的V型冲击坑;同条件下粒子射流破岩体积是水射流破岩体积的2~4倍;随着粒子射流冲蚀时间的增加,粒子射流破岩体积不断增加,但破岩效率降低;粒子射流压力大于10 MPa后,粒子射流破岩效率迅速增大;喷射角度大于6°后,破岩效率迅速减小。  相似文献   

12.
单轴拉伸条件下脆性岩石微裂纹损伤模型研究   总被引:4,自引:2,他引:2  
利用断裂力学、损伤力学和均匀化原理,对脆性岩石单轴拉伸条件下的力学特性进行分析,建立了脆性岩石的微裂纹损伤本构模型.首先对岩石内部微裂纹的统计分布规律进行分析,给出了理论分析过程中微裂纹分布的假设条件,在此基础上,参考已有研究成果,得到含细长微裂纹脆性岩石有效弹性参数的计算公式.然后,对岩石内部单一微裂纹进行断裂力学和损伤力学分析,得到了扩展裂纹尖端的应力强度因子计算公式,在一定微裂纹断裂扩展准则和断裂扩展速率的假设基础上,利用积分原理,得到了岩石整体的损伤变量和损伤演化方程,由此建立单轴拉伸条件下脆性岩石的微裂纹损伤本构模型.最后,通过一花岗岩的单轴拉伸试验结果对微裂纹损伤本构模型进行了验证.  相似文献   

13.
含损伤演化的TM耦合数值模型及其应用研究   总被引:6,自引:0,他引:6  
蔡坤  张洪武  陈飙松 《力学学报》2006,38(4):505-513
基于生物力学中的Wolff法则,发展了一种连续体拓扑优化的新方法. 有待优化的结构 被看作是一块遵从Wolff法则生长的骨骼,把寻找其最优拓扑的过程比拟为骨骼的重建/生 长过程. 采用骨骼的重建/生长规律作为准则更新材料分布,直至达到一个平衡状态并由此 获得结构的最优拓扑. 算例表明了所提出方法的有效性.  相似文献   

14.
运用全解耦流固耦合理论,建立了水射流冲击岩石介质流固耦合数值分析模型,给出了数值算法,计算分析了考虑和不考虑孔隙流体耦合效应对射流冲击岩石时应力分布的影响规律。结果表明,在射流冲击作用下,如不考虑孔隙流体耦合作用,最大拉应力位于冲击面,离冲击中心径向距离与喷距成正比,最大剪切应力位于岩石冲击中心下部约0.5倍喷嘴直径位置;如考虑孔隙流体耦合作用,最大拉应力位于岩石冲击中心下部约0.4倍喷嘴直径位置。数值分析结果可为水射流破岩机理研究中岩石破坏准则的选择提供依据。  相似文献   

15.
岩石力学中的Fuzzy数学方法   总被引:4,自引:0,他引:4  
李文秀 《力学学报》1990,22(3):328-336
鉴于岩石力学问题中的许多因素具有强烈的“模糊性”,本文利用Fuzzy数学来研究工程中的岩体力学问题;并针对露天矿山岩体变形破坏问题,应用Fuzzy概率测度理论导出了岩体变形破坏的Fuzzy概率公式,且给出了数值方法,实例计算表明,本方法适用于分析和研究岩石力学尤其是矿山岩体力学问题。  相似文献   

16.
为了克服传统元件组合模型不能描述岩石蠕变过程中非线性特征的缺陷,首先根据加速蠕变阶段的应变和应变率随蠕变时间急剧增大的特点,建立黏塑性应变与蠕变时间的指数函数关系并提出非线性黏塑性体.将该非线性黏塑性体与广义Burgers蠕变模型串联,建立可以描述岩石全蠕变过程的非线性黏弹塑性蠕变模型,根据叠加原理得到一维应力状态下的轴向蠕变方程.然后基于塑性力学理论指出岩石三维蠕变本构方程建立过程中的不足之处,并给出非线性黏弹塑性蠕变模型合理的三维蠕变方程.最后采用不同应力水平下砂岩轴向蠕变试验对模型合理性进行验证,结果表明:拟合曲线与试验曲线吻合度较高,所建蠕变模型能够很好地描述砂岩在不同应力水平下的蠕变变形规律,尤其对加速蠕变阶段的非线性特征描述效果很好,验证了模型的合理性.  相似文献   

17.
DAMAGE MODEL OF CONTROL FISSURE IN PERILOUS ROCK   总被引:29,自引:0,他引:29  
Hitherto, perilous rock is the weakest topic in disasters studies. Specially, damage of control fissure under loads is one key technique in study of develop mechanism of perilous rock. Damage division of end area of control fissure was defined by authors, then calculation methods of timed-Poisson's ratio and timed-Young's modulus were established in damage mechanics theory. Further, the authors set up damage constitutive equation of control fissure, which founds important basis to numerical simulation for control fissure to develop.  相似文献   

18.
该文致力于混凝土疲劳损伤发展机理的微细观解释. 以速率过程理论为基础,通过考虑裂纹断裂过程区中的水分子动力作用,在细观尺度上建立了具有物理机理的疲劳损伤能量耗散表达式. 结合细观随机断裂模型,以宏观损伤力学为框架,建立了疲劳损伤演化方程. 通过数值模拟,计算了单轴受拉时的疲劳损伤演化以及不同加载幅度下的疲劳寿命. 与相关试验结果的对比显示出该文模型能够很好地表现混凝土材料的疲劳损伤演化过程.  相似文献   

19.
岩体施工过程损伤演化预测的时变力学分析   总被引:1,自引:0,他引:1  
由建立的岩体损伤本构模型,依据时变力学理论对岩体进行不同施工路径下的分步开挖计算,并对施工过程中各点损伤演化历程进行计算机仿真模拟,以预测后续开挖的损伤状态及寻求较优施工步序。理论及算例分析均表明:存在损伤演化时,不同施工步序下岩体终应力位移和损伤状态均不同,设计与施工应进行损伤演化的时变力学分析,以保证施工安全。  相似文献   

20.
数值流形方法及其在岩石力学中的应用   总被引:9,自引:0,他引:9  
李树忱  程玉民 《力学进展》2004,34(4):446-454
数值流形方法是目前岩石力学分析的主要方法之一.该方法起源于不连续变形分析,主要用于统一求解连续和非连续问题,其核心技术是在分析时采用了双重网格:数学网格提供的节点形成求解域的有限覆盖和权函数;而物理网格为求解的积分域.数学网格被用来建立数学覆盖,数学覆盖与物理网格的交集定义为物理覆盖,由物理覆盖的交集形成流形单元.流形方法的优点在于它使用了独立的数学和物理网格,具有和有限元明显不同的定义形式,且数学网格对于同一问题不同的求解精度的需求可以很方便地细化.由于该方法考虑了块体运动学,可以模拟节理岩体裂隙的开裂和闭合过程,因而在岩石力学中得到了广泛应用,近年来许多学者对该方法进行了研究.本文简要叙述了节理岩体的数值方法从连续到非连续的发展过程,详细地介绍了数值流形方法的组成和数值流形方法在岩石力学及其相关领域的研究和发展概况,最后就作者所关心的一些问题,如三维问题的数值流形方法、数值流形方法在物理非线性问题和裂纹扩展问题中的应用、相关的耦合方法等进行了探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号