首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A three-dimensional numerical study on the flow and heat transfer characteristics over a rotating disk surface with discrete pins was conducted by the use of RNG k–ε turbulent model. And some experiments were also made for validation. The effects of rotating angular speed and pin configuration on the temperature maps and convective heat transfer characteristics on the rotating surface were analyzed. As the increase of rotating velocity, the impingement of pumping jet on the centre of rotating disk becomes stronger and the transition from laminar to turbulent occurs at the outer radius of rotating disk, which resulting in heat transfer enhancement. The pins on the disk make the pumping action of a rotating disk weaker. Simultaneously, they also act as perturbing elements to the cyclone flow near the rotating disk surface, making the overall heat transfer to be enhanced. The needle pins have higher convective heat transfer capacity than the discrete ring pins with the same extend pin areas.  相似文献   

2.
An investigation has been made of turbulent film condensation on a horizontal elliptical tube. The present study is based on Colburn analogy [1] and potential flow theory to determine the high tangential velocity of vapor flow at the boundary layer and to define the local interfacial shear owing to high velocity vapor flow across the tube surface. The condensate film flow and local/or mean heat transfer characteristics from a horizontal elliptical tube with variable ellipticities, e, under the influence of Froude number, sub-cooling parameter and system pressure have been performed. The present result for dimensionless mean heat transfer coefficient reduces to the same result obtained by Sarma et al.s [2] e=0 (circular tube). Compared with laminar model by Yang and Hsu [3], the present turbulent model shows in better agreement with Michaels experimental data [4] (for e=0). The dependence of mean Nusselt coefficient on the effect of n (power of Reynolds) [1] is also discussed.  相似文献   

3.
An approximate method is proposed for integrating the nonstationary equations of a diffusion or thermal boundary layer using the known steady solution in the planar or axisymmetric case. It is shown that the proposed method is exact in problems involving mass or heat transfer of reacting drops and bubbles in a laminar flow of a viscous incompressible fluid and also particles moving in an ideal fluid. An integral equation is obtained for the local diffusion or heat flux in the case of abrupt activation of a reaction on the surface of a particle.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 87–92, September–October, 1982.  相似文献   

4.
The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous fluid flow motion due to a porous disk rotating with a constant angular speed. The three-dimensional equations of motion are treated analytically yielding derivation of exact solutions with suction and injection through the surface included. The well-known thinning/thickening flow field effect of the suction/injection is better understood from the exact velocity equations obtained. Making use of this solution, analytical formulas corresponding to the permeable wall shear stresses are extracted.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. As a result, exact formulas are obtained for the temperature field which take different forms depending on whether suction or injection is imposed on the wall. The impacts of several quantities are investigated on the resulting temperature field. In accordance with the Fourier‘s heat law, a constant heat transfer from the porous disk to the fluid takes place. Although the influence of dissipation varies, suction enhances the heat transfer rate as opposed to the injection.  相似文献   

5.
We treat numerically in this paper, the transient analysis of a conjugated heat transfer process in the thermal entrance region of a circular tube with a fully developed laminar power-law fluid flow. We apply the quasi-steady approximation for the power-law fluid, identifying the suitable time scales of the process. Thus, the energy equation in the fluids is solved analytically using the well-known integral boundary layer technique. This solution is coupled to the transient energy equation for the solid where the transverse and longitudinal heat conduction effects are taken into account. The numerical results for the temporal evolution of the average temperature of the tube wall, av, is plotted for different nondimensional parameters such as conduction parameter, , the aspect ratios of the tube, and 0 and the index of power-law fluid, n.  相似文献   

6.
A study was undertaken to investigate transition in a pipe flow accelerated from rest. Experiments were carried out on a vertical tube under a constant head of liquid: flow was initiated by opening a solenoid valve. A wall shear stress probe used in the role of an event recorder identified two transition events, separated by the passage of a turbulent to laminar front and a period of laminar flow. Evidence suggests that the first comprises a laminar to turbulent interface arising from a natural stable/unstable front moving up the tube as local conditions become met, while the second is consequent upon the formation of a continuous turbulent structure carried down the tube from the inlet by the bulk flow. The paper provides a formal explanation of a phenomenon which is typical of that which is observed in starting pipe flows with a disturbed inlet.  相似文献   

7.
The main interest of the present investigation is to generate exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous electrically conducting fluid flow motion due to a disk rotating with a constant angular speed. For an external uniform magnetic field applied perpendicular to the plane of the disk, the governing equations allow an exact solution to develop taking into account of the rotational non-axisymmetric stationary conducting flow.Making use of the analytic solution, exact formulas for the angular velocity components as well as for the wall shear stresses are extracted. It is proved analytically that for the specific flow the properly defined thicknesses decay as the magnetic field strength increases in magnitude. Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. The temperature field is shown to accord with the dissipation and the Joule heating. According to Fourier's heat law, a constant heat transfer from the disk to the fluid occurs, though decreases for small magnetic fields because of the dominance of Joule heating, it eventually increases for growing magnetic field parameters.  相似文献   

8.
This paper presents a study of velocity fluctuations occurring in the stably stratified atmospheric boundary layer over an Antarctic ice shelf. The approach is based on wavelet analysis which has advantages over conventional Fourier analysis. Two case studies are presented, comprising: pure turbulent flow and a large amplitude solitary wave.  相似文献   

9.
The flow of an ideal incompressible weightless fluid that fills a rotating cylinder is investigated. The rotation axis of the cylinder is outside it and parallel to the cylinder generator, and the form of the cylinder section is determined in the process of solution of the problem. In the paper, a class of exact solutions of the problem is obtained in terms of elementary functions for different angular velocities of the cylinder. In these solutions, the flow field is formed by two straight vortex filaments parallel to the cylinder generator. The intensities of the vortex filaments are determined by the angular velocity . Investigations of ideal fluid flow in rotating vessels were begun already in the last century by Stokes and Zhukovskii [1]. The subject has been reviewed in monographs [2, 3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No, 1, pp. 71–75, January–February, 1984.  相似文献   

10.
The main interest of the present paper is to generate exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous electrically conducting fluid flow motion due to a disk rotating with a constant angular speed. In place of the traditional von Karman’s axisymmetric evolution of the flow, the rotational non-axisymmetric stationary conducting flow is taken into consideration here. As a consequence, for an external uniform magnetic field applied perpendicular to the plane of the disk, the governing equations allow an exact solution to develop, which is influenced by a fixed point on the disk and also is bounded everywhere in the normal direction to the wall.  相似文献   

11.
A Two-Equation Analysis of Convection Heat Transfer in Porous Media   总被引:2,自引:0,他引:2  
This paper presents a two-equation analysis on the convection heat transfer in porous media based on the modeling developed by Carbonell and Whitaker (1984). The porous system under consideration is bounded by two parallel walls and heated uniformly from one side surface. The Darcy flow is imposed and the fully developed heat transfer is assumed. General solutions, which take into account the additional convective and conductive terms, are obtained for the temperature fields and the Nusselt number. The detailed studies are presented for the porous systems characterized by consolidated and unconsolidated circular unit cells. The results show that, for the consolidated unit cell case, a prediction without the additional convective term overestimates the heat transfer, while for the unconsolidated unit cell case, this effect is negligible. The additional conductive terms are also examined and found to act conventionally as part of the conductive terms.  相似文献   

12.
An exact solution of the heat transfer problem for a uniform air stream impinging on a rotating disk is found. By introducing self-similar radial velocity and temperature profiles, the problem is reduced to a system of ordinary differential equations which are solved numerically. The Nusselt numbers are calculated for Prandtl numbers equal to 1 and 0.71 and various ratios of the free-stream velocity to the disk rotation velocity. The limits of the flow regime in which the heat transfer is determined solely by the impact jet parameters are found. The results are compared with experimental data for the stagnation point.  相似文献   

13.
The flow in the gap between rotating and stationary parallel disks is an attractive object for studying the transition characteristics in three-dimensional internal flows. Firstly, in this case a large region of the basic motion is satisfactorily described by a self-similar solution to the Navier-Stokes equations [1]; secondly, as the parameter = h2/v ( is the. angular velocity of rotation of one of the disks and h is the gap width) varies, there is an evolution of the basic motion, so that it is easy to produce different types of initial and subsequent instabilities. The basic steady regime for axially symmetric flow has been studied by many authors (see [1, 2]). Questions of the transition in the gap between disks have been considered [3, 4]. This paper presents a methodology and the results of experimental investigations for different types of initial and subsequent instabilities in the gap between disks enclosed by a cylindrical cover. It was found that as a result of the loss of stability of the basic regime one of two steady vortex regimes is developed depending on the value of the relative gap width. The subsequent stages of soft excitation of the turbulent regime are described and the corresponding boundaries established. It is shown that in very narrow gaps the excitation of turbulence has a hard nature of the type realized in Couette flow. The stability limit for a laminarized boundary layer on a rotating disk and the boundary for complete turbulence of the layer were determined for relatively wide gaps. A comparison was made with known data for an unenclosed rotating disk.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 28–36, September–October, 1984.  相似文献   

14.
The development of the mixed convection flow of an incompressible laminar viscous fluid over a semi-infinite vertical plate has been investigated when the fluid in the external stream is set into motion impulsively, and at the same the surface temperature is suddenly raised from its ambient temperature. The problem is formulated in such a way that at time t = 0, it reduces to Rayleigh type of equation and as time t , it tends to Blasius type of equation. The scale of time has been selected such that the traditional infinite region of integration becomes finite which significantly reduces the computational time. The nonlinear coupled singular parabolic partial differential equations governing the unsteady mixed convection flow have been solved numerically by using an implicit finite-difference scheme. The surface shear stress and the heat transfer increase or decrease with time when the buoyancy parameter is greater or less than a certain valve. There is a smooth transition from the initial steady state to the final steady state. The skin friction and heat transfer for the constant heat flux case are more than those of the constant wall temperature case. Also they increase with the buoyancy force.  相似文献   

15.
Ioan Pop 《Meccanica》1972,7(2):80-86
Summary The solution of unsteady forced flow against an unsteadily rotating disk is obtained when the outer flow and the angular velocity of the disk are expressed in powers series of t. The solution is established by expanding the velocity components and the pressure in powers of small time. The extension of the obtained solutions is possible by using Zeytounian's technique. Finally, an analysis is made for the problem of the time-dependent flow due to an infinite rotating disk started accelerated from rest.
Sommario La soluzione del flusso forzato contro un disco rotante in regime non permanente è ottenuta quando il flusso esterno e la velocità angolare del disco sono espresse in una serie di potenze t. La soluzione è formulata esponendo la componente della velocità e la pressione in potenze di tempo piccolo. L'estensione delle soluzioni ottenute è possibile usando la tecnica di Zeytounian. Infine si fa l'analisi del flusso dipendente dal tempo dovuto a un disco rotante infinito accelerato dalla quiete.
  相似文献   

16.
Flow through a staggered array or bundle of parallel rigid cylinders of diameter D is computed with the help of a three-dimensional direct numerical simulation (DNS) at various values of Reynolds number between 50 and 6000. Two different spacings L of the tubes, i.e. L/D= 2 and L/D= 3, have been considered. When Re 500 the flow is laminar. In that case the converging flow between a pair of adjacent cylinders brings the oppositely signed vorticity at the two edges of the wake closer together behind the upstream cylinder so that the vorticity decreases quickly due to cancellation by diffusion. At Re 6000, when the flow is highly turbulent, the wake vorticity disappears rather by turbulent diffusion. This disappearance of the wakes in the closely packed flows (i.e. L/D 2) causes the mean flow in a cell, which consists of the region around a single cylinder, to be effectively independent of that in other cells. Another consequence is that the mean velocity field can be very well approximated by potential flow except in a thin boundary layer along the cylinder and a short wake behind it. The results have been applied to the transport of scalars in closely packed arrays. As in other complex flows, the dispersion of the scalars is dominated by the divergence and convergence of the streamlines around the cylinder rather than by the wake turbulence. Approximate expressions are derived for this topologically influenced dispersion in terms of the geometry of the array. The fact when most of the flow in the array can be approximated by a potential flow, allows us to introduce a fast approximate calculation method to compute the dispersion.  相似文献   

17.
The heat transfer between a supersonic flow and the undersurface of delta wings with leading-edge sweep angles x=65 and 70° is investigated in a shock tunnel at angles of attack 15°. The supersonic inviscid flow over these wings in regimes in which the bow shock is attached to the sharp leading edges is calculated numerically. The compressible boundary layer problem is solved for the calculated inviscid flow fields in the laminar, transition and turbulent flow zones. The calculations and experimental values of the heat flux on the surface of the wings are compared. The calculations are in satisfactory agreement with the experimental data in the laminar and transition zones, but diverge significantly (by up to 20%) in the turbulent zone.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 183–188, July–August, 1991.The authors wish to thank A. A. Golubinskii for assisting with the solution of the problem of supersonic inviscid gas flow over a wing.  相似文献   

18.
In this paper large-eddy simulation is used to study buoyancy-induced flow in a rotating cavity with an axial throughflow of cooling air. This configuration is relevant in the context of secondary air systems of modern gas turbines, where cooling air is used to extract heat from compressor disks. Although global flow features of these flows are well understood, other aspects such as flow statistics, especially in terms of the disk and shroud boundary layers, have not been studied. Here, previous work for a sealed rotating cavity is extended to investigate the effect of an axial throughflow on flow statistics and heat transfer. Time- and circumferentially-averaged results reveal that the thickness of the boundary layers forming near the upstream and downstream disks is consistent with that of a laminar Ekman layer, although it is shown that the boundary layer thickness distribution along the radial direction presents greater variations than in the sealed cavity case. Instantaneous profiles of the radial and azimuthal velocities near the disks show good qualitative agreement with an Ekman-type analytical solution, especially in terms of the boundary layer thickness. The shroud heat transfer is shown to be governed by the local centrifugal acceleration and by a core temperature, which has a weak dependence on the value of the axial Reynolds number. Spectral analyses of time signals obtained at selected locations indicate that, even though the disk boundary layers behave as unsteady laminar Ekman layers, the flow inside the cavity is turbulent and highly intermittent. In comparison with a sealed cavity, cases with an axial throughflow are characterised by a broader range of frequencies, which arise from the interaction between the laminar jet and the buoyant flow inside the cavity.  相似文献   

19.
This study is to simulate the turbulent flow field and heat transfer when cold fluid flows through a finite-length circular channel, which meantime undergoes a reciprocating motion using a numerical method. The mass, momentum and energy conservation equations and turbulent k- equations are derived for a turbulent flow field in a reciprocating coordinate by a coordinate transformation from the stationary coordinate system. The SIMPLE-C scheme is used to investigate heat transfer in a cooling channel undergoing a reciprocating motion by changing parameters and cooling mediums. The parameters are Reynolds number (7170 to 20000) and Pulsating number (1.55 to 4.65). The results show that the averaged Nusselt number increase with increasing both Reynolds number and Pulsating number, and the averaged Nusselt number of cooling oil is lower than that of water at the same incoming flow rate for both the stationary and reciprocating channel.  相似文献   

20.
Summary The effect of an internal heat source on the heat transfer characteristics for turbulent liquid metal flow between parallel plates is studied analytically. The analysis is carried out for the conditions of uniform internal heat generation, uniform wall heat flux, and fully established temperature and velocity profiles. Consideration is given both to the uniform or slug flow approximation and the power law approximation for the turbulent velocity profile. Allowance is made for turbulent eddying within the liquid metal through the use of an idealized eddy diffusivity function. It is found that the Nusselt number is unaffected by the heat source strength when the velocity profile is assumed to be uniform over the channel cross section. In the case of a 1/7-power velocity expression, the Nusselt numbers are lower than those in the absence of internal heat generation, and decrease with diminishing eddy conduction. Nusselt numbers, in the absence of an internal heat source, are compared with existing calculations, and indications are that the present results are adequate for preliminary design purposes.Nomenclature A hydrodynamic parameter - a half height of channel - a 1 a constant, 1+0.01 Pr Re 0.9 - a 2 a constant, 0.01 Pr Re 0.9 - C p specific heat at constant pressure - D h hydraulic diameter of channel, 4a - h heat transfer coefficient, q w/(t wt b) - I 1 integral defined by (17) - I 2 integral defined by (18) - k diffusivity parameter, (1+0.01 Pr Re 0.9)1/2 - m exponent in power velocity expression - Nu Nusselt number, hD h/ - Nu 0 Nusselt number in absence of internal heat generation - Pr Prandtl number, / - Q heat generation rate per volume - q w wall heat flux - Re Reynolds number for channel, 2/ - s ratio of heat generation rate to wall heat flux, Qa/q w - T dimensionless temperature, (t wt)/(t wt b) - t fluid temperature, t w wall temperature, t b fluid bulk temperature - u fluid velocity in x direction, , fluid mean velocity - x longitudinal coordinate measured from channel entrance - x + dimensionless longitudinal coordinate, 2(x/a)/Pr Re - y transverse coordinate measured from channel centerline - z transverse coordinate measured from channel wall, ay - molecular diffusivity of heat, /C p - dummy variable of integration - dummy variable of integration - H eddy diffusivity of heat - M eddy diffusivity of momentum - dummy variable of integration - fluid thermal conductivity - T dimensionless diffusivity, Pr ( H/) - fluid kinematic viscosity - dummy variable of integration - fluid density - dummy variable of integration - ratio of eddy diffusivity for heat transfer to that for momentum transfer, H/ M - average value of - dimensionless velocity distribution, u/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号