首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
配点类无网格法需要计算近似函数的二阶导数,因而在移动最小二乘(MLS)近似中至少要采用二次基函数。本文利用Voronoi图对双重点移动最小二乘近似法进行了改进,建立了基于Voronoi图的双重点移动最小二乘近似(VDG),并利用加权最小二乘法离散微分方程,导出了双重点最小二乘配点无网格法(MD GLS)。该方法将求解域用节点离散,并以节点为生成点建立Voronoi图,取Voronoi多边形的顶点为辅助点。近似函数及其二阶导数的计算过程可分解为两个步骤:首先用场函数节点值拟合辅助点处近似函数的一阶导数,再以辅助点处近似函数的一阶导数值拟合节点处近似函数的二阶导数。由于在每一步中只需计算MLS形函数及其一阶导数,这种近似方法需要较少的影响点和较小的影响域。同时借助于Voronoi结构的优良几何性质,可以快速地搜索影响点。研究表明,与基于MLS的加权最小二乘无网格法(MWLS)相比,这种方法可以显著提高计算效率,并且在精度和收敛性方面也有所改善。  相似文献   

2.
基于核重构思想的最小二乘配点型无网格方法   总被引:4,自引:3,他引:4  
史宝军  袁明武  李君 《力学学报》2003,35(6):697-706
介绍重构核点法的基本原理和近似函数的构造方法,并基于核重构思想,应用配点法和最小二乘原理,离散微分方程,建立求解的代数方程,提出了一种基于核重构思想的最小二乘配点型无网格方法.与一般配点法相比,该方法的系数矩阵是有对称正定的,计算精度高,稳定性好.该方法的实施不需要背景网格,不需要进行高斯积分,与Galerkin法相比,具有计算量小、边界条件处理简单的特点,是一种真正的无网格法.对该方法构造过程中的近似函数及其导数的计算、修正函数的计算及方法的实现等问题进行了探讨.文中结合若干典型算例,检验了该方法的有效性.  相似文献   

3.
加权最小二乘无网格法是一种基于节点信息的纯无网格法,该方法使用最小二乘法建立系统的变分原理,通过移动最小二乘法构造近似函数,控制方程在节点处的残量使用最小二乘法予以消除,边界条件通过罚函数法引入。本文推导了瞬态热传导问题的加权最小二乘无网格计算格式,编制了相应的计算程序,算例结果表明,该方法具有精度高、前后处理简单的优点,是一种高效的的新型无网格法。  相似文献   

4.
紧支试函数加权残值法   总被引:11,自引:0,他引:11  
将紧支函数引入加权残值法中,提出了紧支试函数加权残值法,其数值格式具有和有限元相似的窄带系数矩阵,提高了加权残值法的计算效率.在紧支试函数加权残值的基础上,导出了紧支试函数直接配点法、紧支试函数Hermite配点法和紧支试函数最小二乘配点法的具体格式,并且对几个典型算例进行了分析.与配点法相比,这些方法精度高,稳定性好,而与Galerkin法相比,这些方法效率高.  相似文献   

5.
黄娟  姚林泉 《力学季刊》2007,28(3):461-470
无网格法是求解微分方程定解问题的一种新数值方法.移动最小二乘近似只要求近似函数在各节点处的误差的平方和最小,对近似函数导数的误差没有任何约束.而广义移动最小二乘近似要求近似函数及其导数在所有节点处的误差的平方和最小.为了降低计算工作量,本文构造了要求近似函数在全部节点处和任意阶导数在部分节点处误差的平方和最小的改进广义移动最小二乘近似.数值计算显示本文提供的方法关于函数值和各阶导数值都具有很高的精度.  相似文献   

6.
弹性力学问题的局部Petrov—Galerkin方法   总被引:50,自引:2,他引:48  
龙述尧 《力学学报》2001,33(4):508-518
提出了弹性力学平面问题的局部Petrov-Galerkin方法,这是一种真正的无网格方法。这种方法采和移动最小二乘近似函数作为试函数,并且采用移动最小二乘近似函数的权函数作为加权残值法加权函数;同时这种方法只包含中心在所考虑点处的规则局部区域上以及局部边界上的积分,所得系统矩阵是一个带状稀疏矩阵,该方法可以容易推广到求解非线性问题以及非均匀介质的力学问题。还计算了两个弹性力学平面问题的例子,给出了位移和能量的索波列夫模及其相对误差。所得计算结果证明:该方法是一种具有收敛快、精度高、简便有效的通用方法;在工程中具有广阔的应用前景。  相似文献   

7.
断裂力学问题的杂交边界点方法   总被引:1,自引:0,他引:1  
提出了一种求解断裂力学的新的边界类型无网格方法-杂交边界点法.以修正变分原理和移动最小二乘近似为基础,同时具有边界元法和无网格法的优良特性,求解时仅仅需要边界上离散点的信息.该文将杂交边界点方法应用到弹性断裂问题中,将移动最小二乘方法中的基函数扩充,能更好的模拟裂纹尖端应力场的奇异性,推导了求解断裂力学的杂交边界点法方程,与传统的元网格方法相比,文中方法具有后处理简单,计算精度高的优点.数值算例表明了该方法的稳定性和有效性.  相似文献   

8.
弹性力学的一种边界无单元法   总被引:24,自引:7,他引:24  
程玉民  陈美娟 《力学学报》2003,35(2):181-186
首先对移动最小二乘副近法进行了研究,针对其容易形成病态方程的缺点,提出了以带权的正交函数作为基函数的方法-改进的移动最小二乘副近法,改进的移动最小二乘逼近法比原方法计算量小,精度高,且不会形成病态方程组,然后,将弹性力学的边界积分方程方法与改进的移动最小二乘逼近法结合,提出了弹性力学的一种边界无单元法,这种边界无单元法法是边界积分方程的无网格方法,与原有的边界积分方程的无网格方法相比,该方法直接采用节点变量的真实解为基本未知量,是边界积分方程无网格方法的直接解法,更容易引入界条件,且具有更高的精度,最后给出了弹性力学的边界无单元法的数值算例,并与原有的边界积分方程的无网格方法进行了较为详细的比较和讨论。  相似文献   

9.
提出了一种新型无网格法,即无网格全局介点(MGIP)法。该方法采用移动最小二乘核近似来构造形函数,有利于提高数值方法的计算稳定性,而且算法更为简单。该方法需要引入全局介点进行数值离散,基于有限点的广义变分法导出求解系统方程,并采用罚系数法来保证边界条件,数值实现较为简洁。数值算例结果表明:MGIP法的计算耗时不到无网格局部彼得洛夫-伽辽金法的1%,具有较高的计算效率;相比于一般配点法,本文方法的计算稳定性更好,计算精度更高。  相似文献   

10.
用无网格局部Petrov-Galerkin法分析非线性地基梁   总被引:2,自引:1,他引:2  
龙述尧 《力学季刊》2002,23(4):547-551
利用无网格局部Petrov-Galerkin法求解了非线性地基梁。在Petrov-Galerkin方法中,采用移动最小二乘(MLS)近似函数作为场主量挠度的试函数并取移动最小二乘近似函数中的体验函数作为近似场函数的加权函数,采用罚因子法施加本质边界条件。文末给出了两个计算实例,算例的结果表明,Petrov-galerkin法不仅能成功地分析线性地基梁,而且也适用于解非线性地基梁,在分析非线性地基梁时具有收敛快,稳定性好的优点。  相似文献   

11.
动力弹塑性分析的无网格自然单元法   总被引:1,自引:0,他引:1  
基于无网格自然单元法,提出了结构动力弹塑性响应分析的一条新途径.自然单元法是一种新兴的无网格数值计算方法,其实质是基于自然邻近插值的伽辽金法.自然单元法在本质边界条件的施加上较采用移动最小二乘法的无网格法具有明显的优势.在空间域上采用自然单元法离散,并运用加权余量法推导了动力弹塑性分析的离散控制方程.然后,采用预校正形...  相似文献   

12.
利用传统有限元法求解声压分布问题常常受到污染误差和色散误差的困扰.加权最小二乘无网格法(MWLS)是一种基于移动最小二乘(MLS)近似的无网格方法,求解声腔声压分布问题具有低色散、高精度的特点.然而传统的MLS近似有时容易产生病态矩阵,利用加权正交基函数构建改进的移动最小二乘(IMLS)近似,得到的系统方程为非病态的.论文基于改进的加权最小二乘无网格法(IMWLS)求解三维声腔内部声压分布.计算得到的声压分布和声压频响曲线都与参考值十分吻合,峰值误差和污染误差都比FEM的小,计算成本相比无单元伽辽金法显著降低.计算结果表明IMWLS相比传统的FEM,能在更高的频段内达到高精度,并且相比EFGM能大幅提高计算效率.  相似文献   

13.
复变量移动最小二乘法及其应用   总被引:7,自引:2,他引:7  
提出了复变量移动最小二乘法,并详细讨论了基于正交基函数的复变量移动最小二乘 法. 然后,将复变量移动最小二乘法和弹性力学的边界无单元法结合,提出了弹性力学的复 变量边界无单元法,推导了相应的公式,并给出了数值算例. 基于正交基函数的复变量移动 最小二乘法的优点是不形成病态方程组、精度高,所形成的无网格方法计算量小. 复变量边 界无单元法是边界积分方程的无网格方法的直接列式法,容易引入边界条件,且具有更高的 精度.  相似文献   

14.
改进的移动最小二乘法   总被引:4,自引:2,他引:4  
陈美娟  程玉民 《力学季刊》2003,24(2):266-272
近年来发展的无网格方法大多采用移动员小二乘法来构造试函数,而应用移动最小二乘法形成的方程组有时会是病态的甚至奇异的,从而限制了它的发展和应用。本文采用带权正交函数作为基函数对移动最小二乘法做了改进,避免出现病态方程组,且在计算过程中不需要进行短阵求逆运算,提高了计算速度。之后,借鉴牛顿法、平衡法和摄动法对由移动最小二乘法得到的非线性代数方程组提出了新的求解方法。  相似文献   

15.
A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analogy to the solid-shell concept of the finite element method, discretization is carried out by the nodes located on the upper and lower surfaces of the structures. The approximation of all unknown field variables is carried out by using the moving least squares (MLS) approximation scheme in the in-plane directions, while the linear interpolation is applied through the thickness direction. Thus, different boundary conditions are defined only using displacements and penalty method is used to enforce the essential boundary conditions. The constrained Galerkin weak form, which incorporates only displacement degrees of freedom (d.o.f.s), is derived. A modified 3D constitutive relationship is adopted in order to avoid or eliminate some self-locking effects. The numeric efficiency of the proposed meshless formulation is illustrated by the numeric examples.  相似文献   

16.
This paper presents a novel meshless Galerkin scheme for modeling incompressible slip Stokes flows in 2D. The boundary value problem is reformulated as boundary integral equations of the first kind which is then converted into an equivalent variational problem with constraint. We introduce a Lagrangian multiplier to incorporate the constraint and apply the moving least‐squares approximations to generate trial and test functions. In this boundary‐type meshless method, boundary conditions can be implemented exactly and system matrices are symmetric. Unlike the domain‐type method, this Galerkin scheme requires only a nodal structure on the bounding surface of a body for approximation of boundary unknowns. The convergence and abstract error estimates of this new approach are given. Numerical examples are also presented to show the efficiency of the method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号