首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 255 毫秒
1.
Based on the theory of elasticity, exact analytical and numerical solutions of piezoelectric rods under static torsion are studied. In this paper, direct solution method is used. The main scope is to check the extension of validity of assumptions in previous papers that had been made based on linear distribution of electric potential through the cross section and their influences on deflection and the angle of rotation. Stress and electric induction functions are employed to obtain the exact solution of the static and electrostatic equilibrium equations under torsional loading. It is shown that previous assumptions are valid only in some types of piezoelectric materials, while in other types these assumptions lead to considerable deviations from accurate modeling. The present analytical solutions are compared with three-dimensional finite element analysis results and absolute agreements are found. At the end of this article, torsional rigidity, shape-effects on induced piezoelectric deformation and the range of valid region for linear distribution of electric potential assumption have been studied.  相似文献   

2.
基于Kirchhoff理论讨论圆截面弹性细杆的平面振动.以杆中心线的Frenet坐标系为参考系建立动力学方程.杆作平面运动时,其扭转振动与弯曲振动解耦.讨论任意形状杆的扭转振动和轴向受压直杆在无扭转条件下的弯曲振动,证明直杆平衡的静态Lyapunov稳定性与欧拉稳定性条件为动态稳定性的必要条件.考虑轴向力和截面转动惯性效应的影响,导出弯曲振动的固有频率.  相似文献   

3.
In order to characterize the torsional behavior of microwires, an automated torsion tester is established based on the principle of torsion balance. The main challenges in developing a torsion tester at small scales are addressed. An in-situ torsional vibration method for precisely calibrating the torque meter is developed. The torsion tester permits the measurement of torque to nN m, as a function of surface shear strain to a sensitivity of sub-microstrain. Using this technique, we performed (monotonic and/or cyclic) torsion tests on polycrystalline copper and gold wires. It is found that (i) a size effect appears in both the initial yielding and the plastic flow of torsional response; (ii) a reverse plasticity occurs upon unloading in cyclic torsion response; and (iii) the Hall-Petch effect and the strain gradient effect are synergistic. We also performed cyclic torsion tests on human hairs and spider silk which are natural protein fibers with a different morphological structure to metallic wires. It is shown that the single hair exhibits torsional recovery, and that the spider silk displays torsionally superelastic behavior whereby it is able to withstand great shear strain.  相似文献   

4.
In this paper, we provide a new example of the solution of a finite deformation boundary-value problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension, inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for the pressure, axial load and torsional moment required to maintain the given deformation. For two specific simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities on a measure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress. The results for the two strain-energy functions are compared and also compared with results when there is no residual stress.  相似文献   

5.
为了计算任意复杂非圆截面梁横截面扭转中心的位置,用节线法将其约束受扭后所有横截面面外变形的形状用一族包含节线未知函数的曲面表示,建立梁约束受扭时的控制方程后,再用常微分方程求解器分别求出单纯扭矩与横向载荷单独作用时节线未知函数的数值解,最后用刚度等效原理导出复杂截面梁横截面扭转中心的位置。算例计算结果表明:该方法是合理的、有效的,是计算任意复杂非圆截面梁横截面扭转中心位置的可靠方法。  相似文献   

6.
We study the Mullins effect for a circular cylinder of incompressible, isotropic material under loading cycles of combined extension and torsion. The analysis is based on the constitutive model recently proposed in De Tommasi et al. (J. Rheol. 50: 495–512, 2006). This model assumes that the mechanical response at each material point results as a homogenized effect of a mixture of different materials with variable activation and breaking thresholds. We show the feasibility of this approach to treat complex, inhomogeneous deformations. In particular, we obtain for the generic loading path the analytical expressions of the stress field, of the axial force, and of the twisting moment. The proposed model exhibits the Mullins stress softening effect in the case of simple extension, simple torsion, and combined extension and torsion. We analyze in detail the path dependent behavior and the preconditioning effects.   相似文献   

7.
A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model.The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle,and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel.Several nominal variables are introduced to simplify the differential governing equation,integral constitutive equation,and boundary conditions.Rather than transforming the constitutive equation from integral to differential forms,the Laplace transformation is used directly to solve the integro-differential equations.The explicit expression for nominal torsional rotation and torque contains four unknown constants,which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation.A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped(CC)FGNT under torsional constraints and a clamped-free(CF)FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.  相似文献   

8.
Stability problems for cylindrical shells under various loading modes were considered in numerous papers. A detailed analysis of such problems can be found, e.g., in the monograph [1]. We refer to the solutions presented in this monograph as classical.For long cylindrical shells in axial compression, one of the buckling modes is the purely beam flexural mode similar to the classical buckling mode of a straight rod. It is well known that it can be studied by using the nonlinear or linearized equations of the membrane theory of shells. In [2], it was shown that, on the basis of such equations constructed starting from the noncontradictory version of geometrically nonlinear elasticity relations in the quadratic approximation [3], under the separate action of the axial compression, external pressure, and torsion, there are also previously unknown nonclassical buckling modes, most of which are shear ones.In the present paper, we show that the use of the above equations for cylindrical shells under compression and external pressure with simultaneous pure torsion or bending permits revealing the earlier unknown torsional, beam flexural, and beam torsional-flexural buckling modes, which are nonclassical, just as those found in [2]. The second of these buckling modes is realized when axially compressing forces are formed in the shell with simultaneous torsion, and the third of them is realized under compression combined with pure bending.It was found that, earlier than the classical buckling modes, the torsional buckling modes can be realized for relatively short shells with small shear rigidity in the tangent plane, while the second and third buckling modes can be realized for relatively long shells.  相似文献   

9.
In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor. The project supported by the National Natural Science Foundation of China (19932030)  相似文献   

10.
In his study of combined finite extension and torsion of a nonlinear, incompressible, isotropic elastic circular cylinder, Rivlin [1] established a relation for the torsional stiffness which depends only on the axial force, the axial extension ratio and the radius of the undeformed cylinder, in the case of small twist. The relationship did not depend on the structure of the stored energy function and is hence a universal relation. In this paper, we extend Rivlin's result to the case of combined extension and torsion of a cylindrical mixture of a nonlinear elastic solid and fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号