首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A general method for the investigation of adsorption kinetics of nonlinear,nonisothermal systems, based on frequency response analysis, ispresented. It is based on the definition of higher-order frequency response functions (FRFs) on the adsorber and on the particle level. FRFs on the adsorber level can be estimated from experimentally measuredadsorber FR and used to calculate FRFs on the particle level,which can be further used for model identification, by comparison withtheoretical particle FRFs. The general procedure for calculation of particle FRFs from those of adsorber is given. Also, the generalprocedure for theoretical derivation of particle FRFs is given andillustrated with an example of nonisothermal adsorption governed bymicropore diffusion and film resistance heat transfer, as well as theprocedure for calculating unmeasured adsorber FRFs, which isillustrated with an example of a batch adsorber with volume modulation.  相似文献   

2.
Sjöberg  Mattias  Kari  Leif 《Nonlinear dynamics》2003,33(3):323-336
In presenting a nonlinear dynamic model of a rubber vibrationisolator, the quasistatic and dynamic motion influences on theforce response are investigated within the time and frequencydomain. It is found that the dynamic stiffness at the frequency ofa harmonic displacement excitation, superimposed upon the longterm isolator response, is strongly dependent on staticprecompression, dynamic amplitude and frequency. The problems ofsimultaneously modelling the elastic, viscoelastic and frictionforces are removed by additively splitting them, modelling theelastic force response by a nonlinear, shape factor basedapproach, displaying results that agree with those of aneo-Hookean hyperelastic isolator at a long term precompression.The viscoelastic force is modeled by a fractional derivativeelement, while the friction force governs from a generalizedfriction element displaying a smoothed Coulomb force. A harmonicdisplacement excitation is shown to result in a force responsecontaining the excitation frequency and its every otherhigher-order harmonic, while using a linearized elastic forceresponse model, whereas all higher-order harmonics are present forthe fully nonlinear case. It is furthermore found that the dynamicstiffness magnitude increases with static precompression andfrequency, while decreasing with dynamic excitationamplitude – eventually increasing at the highest amplitudes due tononlinear elastic effects – with its loss angle displaying amaximum at an intermediate amplitude. Finally, the dynamicstiffness at a static precompression, using a linearized elasticforce response model, is shown to agree with the fully nonlinearmodel except at the highest dynamic amplitudes.  相似文献   

3.
吸振器在浮筏上减振应用的有限元分析   总被引:1,自引:0,他引:1  
浮筏隔振系统是一种广泛应用的减振降噪装置,但它在低频减振方面还存在较大不足。研究表明通过安装吸振器可以改善原系统的隔振性能。本文针对吸振器在浮筏系统中减振应用的问题,采用有限元方法,通过分析比较安装吸振器前后浮筏系统频响特性的变化情况,对吸振器在实际浮筏上的减振效果进行了模拟计算;同时采用自行研制的磁流变弹性体半主动吸振器进行了吸振器在浮筏上的减振实验。通过计算结果与实验测试值的对比,验证了用该方法对吸振器在实际浮筏上的减振效果进行预报的可行性。  相似文献   

4.
All structures exhibit some form of damping, but despite a large literature on the damping, it still remains one of the least well-understood aspects of general vibration analysis. The synthesis of damping in structural systems and machines is extremely important if a model is to be used in predicting vibration levels, transient responses, transmissibility, decay times or other characteristics in design and analysis that are dominated by energy dissipation. In this paper, new structural damping identification method using normal frequency response functions (NFRFs) which are obtained experimentally is proposed and tested with the objective that the damped finite element model is able to predict the measured FRFs accurately. The proposed structural damping identification is a direct method. In the proposed method, normal FRFs are estimated from the complex FRFs, which are obtained experimentally of the structure. The estimated normal FRFs are subsequently used for identification of general structural damping. The effectiveness of the proposed structural damping identification method is demonstrated by two numerical simulated examples and one real experimental data. Firstly, a study is performed using a lumped mass system. The lumped mass system study is followed by case involving numerical simulation of fixed–fixed beam. The effect of coordinate incompleteness and robustness of method under presence of noise is investigated. The performance of the proposed structural damping identification method is investigated for cases of light, medium, heavily and non-proportional damped structures. The numerical studies are followed by a case involving actual measured data for the case of a cantilever beam structure. The results have shown that the proposed damping identification method can be used to derive an accurate general structural damping model of the system. This is illustrated by matching the damped identified FRFs with the experimentally obtained FRFs.  相似文献   

5.
Khan  A. A.  Vyas  N. S. 《Nonlinear dynamics》2001,24(3):285-304
Volterra and Wiener theories provide the concepts of linear,bilinear, tri-linear, etc., kernels, which upon convolution with theexcitation force, can be employed to represent the response of anonlinear system. Based on these theories, higher-order frequencyresponse functions (FRFs) are employed to estimate the nonlinearstiffness of rolling element bearings, supporting a rigid rotor. Therotor-bearing assembly is idealized as a single-degree-freedom system,with cubic nonlinearity. The analysis involves a third-order kernelrepresentation of the system response. The first and third-order kerneltransforms are extracted from the measurements of the appliedwhite-noise excitation and the resultant response. A third-order kernelfactor is synthesized from this first-order kernel and is processedalong with the third-order kernel for estimation of the nonlinearparameter. Damping is assumed to be linear in the analysis. Theprocedure is demonstrated through measurements on a laboratory test rig.  相似文献   

6.
Petkovska  Menka  Do  Duong D. 《Nonlinear dynamics》2000,21(4):353-376
The concept of higher-order frequency response functions(FRFs), which is based on Volterra series expansion of nonlinearfunctions, is used for analysis of kinetics of nonlinear adsorptionsystems. Four different kinetic mechanisms: Langmuir kinetics, filmresistance control, micropore diffusion control and pore-surfacediffusion control were analyzed and the results were compared. It wasshown that, contrary to the linear frequency response characteristicfunctions, the higher-order FRFs corresponding to different mechanismsdiffer in shape. This result offers great potential for theidentification of the adsorption-diffusion mechanism governing theprocess. It is shown that the second order FRFs give sufficientinformation for distinguishing different mechanisms.  相似文献   

7.
In ballasted railway tracks, one of the important components that supports the rails and distributes wheel/rail loading onto the ballast supporting formation is a railway sleeper (sometimes is also called a “railway tie”). This paper presents results of an experimental modal analysis of prestressed concrete sleepers in both free-free and in-situ conditions, incorporating the dynamic influence of sleeper/ballast interaction. Dynamic interaction between concrete sleepers and ballast support is crucial for the development of a dynamic model of railway track capable of predicting its responses to impact loads due to wheel flats, wheel burns, irregularities of the rail, etc. In this study, four types of prestressed concrete sleepers were in-kind provided by the Australian manufacturers. The concrete sleepers were tested using an impact hammer excitation technique over the frequency range of interest, 0–1600 Hz. Frequency response functions (FRFs) were measured using PULSE modal testing system. The FRFs were processed using STAR modal analysis package to identify natural frequencies and the corresponding mode shapes for the sleepers. The conclusions are presented about the effect of the sleeper/ballast interaction on the dynamic properties of prestressed concrete sleepers and their use for predicting railway track dynamic responses.  相似文献   

8.
This paper analytically investigates the nonlinear dynamics of order-tuned vibration absorbers applied to cyclic rotating flexible structures under traveling wave (TW) engine-order excitation. The primary cyclic structure is assumed to be governed by linear vibrations and the nonlinear absorber response arises from large amplitude kinematic effects. These dynamics are captured by a lumped-parameter model that consists of N blades with one blade mode and one absorber per blade, which are arranged with cyclic symmetry on a rotating disk. The governing equations of motion are formulated for arbitrary absorber paths to allow investigation of the absorber path design for nonlinear response. This paper extends previous work by the authors, which considered the linearized blade and absorber dynamics of a similar system. Several intriguing features of the dynamics were uncovered, most notably the existence of an absorber tuning range that avoids resonance at any rotation speed. Of particular interest is the existence and stability of the steady-state TW response to TW excitation, as experienced in turbomachinery, and how these are affected by selection of the absorber paths, which fix the linear and nonlinear tuning characteristics. It is shown that the TW response, which is unique for the linearized system, also exists for the weakly nonlinear model and can be captured by an equivalent two degree of freedom model obtained using the symmetry of the excitation and system response. The forced response exhibits the usual characteristics of a weakly nonlinear system, specifically, bistability and the attendant hysteresis near resonance. More significantly, it does not experience any additional instabilities associated with the symmetry. That is, the desired TW response is robust to nonlinear effects in the absorber, which allows use of the simple equivalent model for selection of absorber tuning parameters. For good performance and robustness, the linear absorber tuning should be in the “no-resonance zone” described by the linear theory and the absorber paths should have a slightly softening nonlinear characteristic.  相似文献   

9.
Electromagnetic excitation in high power density permanent magnet synchronous motors (PMSMs) due to eccentricity is a significant concern in industry; however, the treatment of lateral and torsional coupled vibrations caused by electromagnetic excitation is rarely addressed, yet it is very important for evaluating the stability of dynamic rotor vibrations. This study focuses on an analytical method for analyzing the stability of coupled lateral/torsional vibrations in rotor systems caused by electromagnetic excitation in a PMSM. An electromechanically coupled lateral/torsional dynamic model of a PMSM Jeffcott rotor is derived using a Lagrange–Maxwell approach. Equilibrium stability was analyzed using a linearized matrix of the equation describing the system. The stability criteria of coupled torsional–lateral motions are provided, and the influences of the electromagnetic and mechanical parameters on mechanical vibration stability and nonlinear behavior were investigated. These results provide better understanding of the nonlinear response of an eccentric PMSM rotor system and are beneficial for controlling and diagnosing eccentricity.  相似文献   

10.
Considering the operating point drift in the dynamic responses of locally nonlinear structures, a new iterative method based on describing functions is introduced to solve for the steady-state frequency response. Drift in the operating point arises in the presence of asymmetric nonlinearity, pre-deformation or static loads. In this study, the internal nonlinear forces are expressed using describing functions. The complex equations governing the responses of multiple frequency components are established and are iteratively solved using the Inverse Matrix Update Method. The nonlinear frequency responses can thus be rapidly obtained, and the validity of the method is verified by simulations. The presented method can be applied to large-scale structures with multiple nonlinear elements.  相似文献   

11.
X-ray imaging has been used to determine the fatigue crack growth behavior and failure mechanisms of spot welded specimens. Cracks critical to final failure of the tensileshear specimens studied are through-thickness plate cracks, which are usually initiated about 0.2–1.0 mm away from the edge of the nugget. In addition, frequency response functions (FRFs), obtained by impact hammer-accelerometer experiments throughout the fatigue process, show that the natural frequencies of these joints nonlinearly decrease with the growth of fatigue cracks. The three-dimensional finite-element analysis results for FRFs of uncracked and cracked spot welded joints are shown to be in good agreement with the experimental data. It is also shown that the fatigue cracks have different degrees of influence on different natural frequencies because of the location of cracks and vibrating modes. The results by both experiment and finite element analysis indicate that analysis of the variation of natural frequencies and vibrating modes may be used to study the fatigue crack propagating shape and the location of the fatigue crack.  相似文献   

12.
The paper presents the characteristics of a new type of nonlinear dynamic vibration absorber for a main system subjected to a nonlinear restoring force under primary resonance. The absorber is connected to the main system by a link in order to be excited with twice the frequency of the motion of the main system. The natural frequency of the absorber is tuned to be twice the natural frequency of the main system, in contrast to autoparametric vibration absorber, whose natural frequency is tuned to be one-half the natural frequency of the main system. The presented absorber is not excited through the autoparametric resonance, i.e., no trivial equilibrium state exists. Therefore, the absorber always oscillates because of the motion of the main system and cannot be trapped by Coulomb friction acting on the absorber, in contrast to the autoparametric vibration absorber. Under small excitation amplitude, this absorber does not produce an overhang in the frequency response curve, which occurs because of the use of the conventional autoparametric vibration absorber; the overhang renders the response amplitude larger than that in the case without an absorber. In addition, the absorber removes the hysteresis in the frequency response curve caused by the nonlinearity of the restoring force acting on the main system. Regarding large excitation amplitude, the response amplitude in the main system can be decreased by increasing the damping of the absorber, but that decrease is limited by the nonlinearity in the restoring force acting on the main system. This paper also describes experimental validation of the absorber under small excitation amplitude using a simple apparatus.  相似文献   

13.
Nonlinear behavior of piezoceramics at strong electric fields is a well-known phenomenon and is described by various hysteresis curves. On the other hand, nonlinear vibration behavior of piezoceramics at weak electric fields has recently been attracting considerable attention. Ultrasonic motors (USM) utilize the piezoceramics at relatively weak electric fields near the resonance. The consistent efforts to improve the performance of these motors has led to a detailed investigation of their nonlinear behavior. Typical nonlinear dynamic effects can be observed, even if only the stator is experimentally investigated. At weak electric fields, the vibration behavior of piezoceramics is usually described by constitutive relations linearized around an operating point. However, in experiments at weak electric fields with longitudinal vibrations of piezoceramic rods, a typical nonlinear vibration behavior similar to that of the USM-stator is observed at near-resonance frequency excitations. The observed behavior is that of a softening Duffing-oscillator, including jump phenomena and multiple stable amplitude responses at the same excitation frequency and voltage. Other observed phenomena are the decrease of normalized amplitude responses with increasing excitation voltage and the presence of superharmonics in spectra. In this paper, we have attempted to model the nonlinear behavior using higher order (quadratic and cubic) conservative and dissipative terms in the constitutive equations. Hamilton's principle and the Ritz method is used to obtain the equation of motion that is solved using perturbation techniques. Using this solution, nonlinear parameters can be fitted from the experimental data. As an alternative approach, the partial differential equation is directly solved using perturbation techniques. The results of these two different approaches are compared.  相似文献   

14.
Super-harmonic resonances may appear in the forced response of a weakly nonlinear oscillator having cubic nonlinearity, when the forcing frequency is approximately equal to one-third of the linearized natural frequency. Under super-harmonic resonance conditions, the frequency-response curve of the amplitude of the free-oscillation terms may exhibit saddle-node bifurcations, jump and hysteresis phenomena. A linear vibration absorber is used to suppress the super-harmonic resonance response of a cubically nonlinear oscillator with external excitation. The absorber can be considered as a small mass-spring-damper oscillator and thus does not adversely affect the dynamic performance of the nonlinear primary oscillator. It is shown that such a vibration absorber is effective in suppressing the super-harmonic resonance response and eliminating saddle-node bifurcations and jump phenomena of the nonlinear oscillator. Numerical examples are given to illustrate the effectiveness of the absorber in attenuating the super-harmonic resonance response.  相似文献   

15.
Singh  R.  Davies  P.  Bajaj  A. K. 《Nonlinear dynamics》2003,34(3-4):319-346
Analysis of the steady-state response of a polyurethane foam and masssystem to harmonic excitation is presented. The foam's uni-directionaldynamic behavior is modeled by using nonlinear stiffness, linearviscoelastic and velocity proportional damping components. Therelaxation kernel for the viscoelastic model is assumed to be a sum ofexponentials. The harmonic balance method is used to develop one- andtwo-term approximations to periodic solutions, and the equationsdeveloped are utilized for system identification. The identificationprocess is based on least-squares minimization of a sub-optimal costfunction that uses response data at various excitation frequencies andamplitudes. The effects of frequency range, spacing and amplitudes ofthe harmonic input on the results of the model parameter estimation arediscussed. The identification procedure is applied to measurements ofthe steady-state response of a base-excited foam-mass system. Estimatesof the system parameters at different levels of compression and inputamplitudes are thus determined. The choice of model-order and thefeasibility of describing the system behavior at several inputamplitudes with a single set of parameters are also addressed.  相似文献   

16.
To predict the nonlinear structural responses of a ship traveling through irregular waves, a third-order Volterra model was applied based on the given irregular data. A nonlinear wave–body interaction system was identified using the nonlinear autoregressive with exogenous input (NARX) technique, which is one of the most commonly used nonlinear system identification schemes. The harmonic probing method was applied to extract the first-, second- and third-order frequency response functions of the system. To achieve this, a given set of time history data of both the irregular wave excitation and the corresponding midship vertical bending moment for a certain sea state was fed into the three-layer perceptron neural network. The network parameters are determined based on the supervised training. Next, the harmonic probing method was applied to the identified system to extract the frequency response function of each order. While applying the harmonic probing method, the nonlinear activation function (i.e., the hyperbolic tangent function) was expanded into a Taylor series for harmonic component matching. After the frequency response functions were obtained, the structural responses of the ship under an arbitrary random wave excitation were easily calculated with rapidity using a third-order Volterra series. Additionally, the methodology was validated through the in-depth analysis of a nonlinear oscillator model for a weak quadratic and cubic stiffness term, whose analytic solutions are known. It was confirmed that the current method effectively predicts the nonlinear structural response of a large container carrier under arbitrary random wave excitation.  相似文献   

17.
范新亮  王彤  夏遵平 《力学学报》2021,53(12):3376-3388
连接部件动态特性的准确辨识对预测装配式机械结构的动力学行为有重要意义. 针对传统基于子结构解耦的连接结构动力学特性识别方法难以直接利用可测量数据进行辨识及辨识结果受噪声影响显著等问题, 本文提出了一种新方法. 首先, 提取子结构解耦基本方程在测试自由度上的分量, 并经矩阵变换得到显含连接动刚度矩阵的形式, 而后由真实连接动刚度矩阵分解为已知的初始矩阵与待求的增量矩阵, 推导了具有收敛性质的增量型方程以增强界面自由度较多时辨识的数值稳定性, 并采用多项式拟合动刚度将其转化为了拟合系数的频域估计方程, 按给定准则选取合适的频率点联立方程后, 得到了只需装配体测试自由度上的频响函数来辨识连接特性的迭代公式. 最后, 以若干算例说明了算法的具体流程. 对10自由度弹簧?质量块系统进行了数值仿真, 验证了所提方法的正确性及抗噪性; 对包含一处胶接连接的T形梁结构和包含两处螺栓连接的L形梁结构进行了试验, 所辨识连接结构与残余结构重组的装配体有限元模型计算的频响函数与测量值在较宽频带内吻合较好, 表明了该方法能有效识别实际装配体结构中的连接特性.   相似文献   

18.
范舒铜  申永军 《力学学报》2022,54(2):495-502
黏弹性材料在航空、机械、土木等领域具有广阔的应用前景,而具有1.5自由度的非线性Zener模型能更好地描述其特性.因此,研究多尺度法的推广和应用具有重要意义.在传统多尺度法的基础上,推广并利用多尺度法对非线性奇数阶微分方程进行研究,解决非线性奇数阶系统的动力学求解问题.以非线性Zener模型为例,首先通过推广的多尺度法...  相似文献   

19.
A theoretical model of an elastic panel in hypersonic flow is derived to be used for design and analysis. The nonlinear von Kármán plate equations are coupled with 1st order Piston Theory and linearized at the nonlinear steady-state deformation due to static pressure differential and thermal loads. Eigenvalue analysis is applied to determine the system’s stability, natural frequencies and mode shapes. Numerically time marching the equations provides transient response prediction which can be used to estimate limit cycle oscillation amplitude, frequency and time to onset. The model’s predictive capability is assessed by comparison to an experiment conducted at a free stream flow of Mach 6. Good agreement is shown between the theoretical and experimental natural frequencies and mode shapes of the fluid–structure system. Stability analysis is performed using linear and nonlinear methods to plot stability, flutter and buckling zones on a free stream static pressure vs temperature differential plane.  相似文献   

20.
《力学快报》2020,10(4):253-261
Implementing resonators with geometrical nonlinearities in vibrational energy harvesting systems leads to considerable enhancement of their operational bandwidths. This advantage of nonlinear devices in comparison to their linear counterparts is much more obvious especially at small-scale where transition to nonlinear regime of vibration occurs at moderately small amplitudes of the base excitation. In this paper the nonlinear behavior of a disc-shaped piezoelectric laminated harvester considering midplane-stretching effect is investigated. Extended Hamilton's principle is exploited to extract electromechanically coupled governing partial differential equations of the system. The equations are firstly order-reduced and then analytically solved implementing perturbation method of multiple scales. A nonlinear finite element method(FEM) simulation of the system is performed additionally for the purpose of verification which shows agreement with the analytical solution to a large extent. The frequency response of the output power at primary resonance of the harvester is calculated to investigate the effect of nonlinearity on the system performance. Effect of various parameters including mechanical quality factor, external load impedance and base excitation amplitude on the behavior of the system are studied. Findings indicate that in the nonlinear regime both output power and operational bandwidth of the harvester will be enhanced by increasing the mechanical quality factor which can be considered as a significant advantage in comparison to linear harvesters in which these two factors vary in opposite ways as quality factor is changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号