首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Flow-induced vibration of an elastic airfoil due to the wake propagating from an upstream cylinder at a Reynolds number of 10 000 based on cylinder diameter D was investigated. A laser vibrometer was employed to measure the bending and torsional vibration displacements at the mid-span of the airfoil and the cylinder. The dimensionless gap size S/D between the two structures was selected as the governing parameter of the flow-induced vibration problem. It is found that the vibration amplitudes of the elastic airfoil and the vortex shedding frequency of the coupled cylinder–airfoil system are strongly dependent on S/D, due to the different fluid–structure interaction experienced by the airfoil at various S/D. Strong vortex-induced vibration of the airfoil appears to be excited by the organized Karman-vortex-street (KVS) vortices in the cylinder wake for S/D>3 and becomes stabilized for S/D3. However, as a result of the shear-layer-induced vibration at an appropriate frequency, structural resonance is also found to occur even though the airfoil is located in the stabilizing range. The occurrence of structural resonance is further supported by a complementary experiment where the slender structure is an elastic flat plate. This phenomenon indicates that assuming the structures in any fluid–structure interaction problem to be rigid is not appropriate, even though they might appear to be highly stiff. The experimental results were used to validate a numerical model previously developed to estimate the structural responses in complicated fluid–structure interaction problems.  相似文献   

2.
In order to study cross flow induced vibration of heat exchanger tube bundles, a new fluid–structure interaction model based on surface vorticity method is proposed. With this model, the vibration of a flexible cylinder is simulated at Re=2.67 × 104, the computational results of the cylinder response, the fluid force, the vibration frequency, and the vorticity map are presented. The numerical results reproduce the amplitude‐limiting and non‐linear (lock‐in) characteristics of flow‐induced vibration. The maximum vibration amplitude as well as its corresponding lock‐in frequency is in good agreement with experimental results. The amplitude of vibration can be as high as 0.88D for the case investigated. As vibration amplitude increases, the amplitude of the lift force also increases. With enhancement of vibration amplitude, the vortex pattern in the near wake changes significantly. This fluid–structure interaction model is further applied to simulate flow‐induced vibration of two tandem cylinders and two side‐by‐side cylinders at similar Reynolds number. Promising and reasonable results and predictions are obtained. It is hopeful that with this relatively simple and computer time saving method, flow induced vibration of a large number of flexible tube bundles can be successfully simulated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The numerical prediction of vortex-induced vibrations has been the focus of numerous investigations to date using tools such as computational fluid dynamics. In particular, the flow around a circular cylinder has raised much attention as it is present in critical engineering problems such as marine cables or risers. Limitations due to the computational cost imposed by the solution of a large number of equations have resulted in the study of mostly 2-D flows with only a few exceptions. The discrepancies found between experimental data and 2-D numerical simulations suggested that 3-D instabilities occurred in the wake of the cylinder that affect substantially the characteristics of the flow. The few 3-D numerical solutions available in the literature confirmed such a hypothesis. In the present investigation the effect of the spanwise extension of the solution domain on the 3-D wake of a circular cylinder is investigated for various Reynolds numbers between 40 and 1000. By assessing the minimum spanwise extension required to predict accurately the flow around a circular cylinder, the infinitely long cylinder is reduced to a finite length cylinder, thus making numerical solution an effective way of investigating flows around circular cylinders. Results are presented for three different spanwise extensions, namely πD/2, πD and 2πD. The analysis of the force coefficients obtained for the various Reynolds numbers together with a visualization of the three-dimensionalities in the wake of the cylinder allowed for a comparison between the effects of the three spanwise extensions. Furthermore, by showing the different modes of vortex shedding present in the wake and by analysing the streamwise components of the vorticity, it was possible to estimate the spanwise wavelengths at the various Reynolds numbers and to demonstrate that a finite spanwise extension is sufficient to accurately predict the flow past an infinitely long circular cylinder.  相似文献   

4.
The velocity, pressure, vorticity and streamfunction are computed in the Oseen hydrodynamic field of an unbounded fluid past a circular cylinder in the Reynolds Number range going from 0.4 to 12. The boundary condition is satisfied by means of the method of least squares that determines suitable coefficients for Faxén series. Particular investigation is made of the wake region in which calculations are made of flow patterns, velocity and vorticity distributions. It is shown that, attached vortices arise at the rear of the cylinder at Reynolds Number Re=3.025. Calculated drag coefficients are in good agreement with known results of the works of several authors up to a Reynolds Number of 20.  相似文献   

5.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

6.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

7.
The effect of the streamwise vortex generators on the near-wake flow structure of a circular cylinder was experimentally investigated. Digital particle image velocimetry (DPIV) measurements were performed in a large circulating water tunnel facility at a Reynolds number of 41,300 where the flow around a bare cylinder was expected to be at the sub-critical flow state. In order to capture various flow properties and to provide a detailed wake flow topology, the DPIV images were analysed with three different but complementary flow field decomposition techniques which are Reynolds averaging, phase averaging and proper orthogonal decomposition (POD). The effect of the vortex generators was clearly demonstrated both in qualitative and in quantitative manner. Various topological features such as vorticity and stress distribution of the flow fields as well as many other key flow characteristics including the length scales and the Strouhal number were discussed in the study. To the best of the authors’ knowledge, the study presents the first DPIV visualization of the near-wake flow of a circular cylinder fitted with the vortex generators in the open literature.  相似文献   

8.
The origination of detached separation is studied on the basis of a numerical solution of the full Navier–Stokes equations. Fluxes of vorticity with different signs generated with twice the frequency of cylinder oscillation move from the cylinder to the outer surface of a detached liquid layer in the form of concentric rings. Near the critical layer between the attached layer and the main flow these rings are torn and crimped to the regions of separated vortices of the corresponding sign. The form of detached separated vortices is similar to that of vortices originating from a stationary circular cylinder in a uniform flow. Transition of the flow to a non-symmetric form with Karman vortex street generation at a Reynolds number (based on the radius) greater than 17 is revealed. This critical Reynolds number is smaller than that for a stationary circular cylinder in a viscous stream (where Re=20 has been determined to be a critical value) and corresponds to the Reynolds number extrapolated from the critical value for the stationary cylinder by increasing the cylinder radius by the attached layer thickness. The vorticity flux from the cylinder surface immediately into the separation region decreases as the frequency of cylinder oscillation increases. Violation of the flow potentiality in the detached separation region is the main cause of the vorticity generation on the outer surface of the attached liquid layer. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
Parallel triangle tube arrays with pitch ratios in the range of 1·2–4·2 have been tested at Reynolds numbers up to 9×104to investigate the vorticity shedding and acoustic resonance mechanisms. Three different components of flow periodicities have been observed. The flow periodicity with the highest Strouhal number (S3) is the weakest component. It is caused by a shear-layer instability in small pitch ratio arrays and at low Reynolds numbers. The S2component is associated with small-scale vortex shedding at the first row. The third component has the lowest Strouhal number (S1) and is the strongest. It is generated by large-scale, alternating vortex shedding at deeper rows, and it becomes dominant at all rows at high Reynolds numbers. For tube arrays with pitch ratios less than 3·4, the onset of acoustic resonances could not be related to the natural flow periodicities mentioned above. This behaviour is in contrast with that of normal triangle arrays, but similar to the acoustic behaviour of in-line arrays. Strouhal number charts for the natural flow periodicities and for the onset of acoustic resonances have been developed.  相似文献   

10.
We present a harmonic balance (HB) method to model frequency lock-in effect during vortex-induced vibration (VIV) of elastically mounted circular cylinder and a flexible riser section in a freestream uniform flow. The fluid flow and structure are coupled by a fixed-point iteration process through a frequency updating algorithm. By minimizing the structural residual in the standard least-square norm, the convergence of HB-based fixed-point algorithm is achieved for a range of reduced velocity. To begin with, the HB solver is first assessed for a periodic unsteady flow around a stationary circular cylinder. A freely vibrating circular cylinder is then adopted for the reduced-order computation of VIV at low Reynolds numbers of Re=100 and 180 with one- and two-degrees-of-freedom. The coupled VIV dynamics and the frequency lock-in phenomenon are accurately captured. The results show that the HB solver is able to predict the amplitude of vibration, frequency and forces comparable to its time domain counterpart, while providing a significant reduction with regard to overall computational cost. The proposed new scheme is then demonstrated for a fully-coupled three dimensional (3D) analysis of a linear-elastic riser section undergoing vortex-induced vibration in the lock-in range. The results reveal the 3D effects through isosurfaces of streamwise vorticity blobs distributed over the span of flexible riser section. In comparison to time domain results, the 3D flow-structure interactions are accurately predicted while providing a similar speed up rate that of 2D simulations. This further corroborates that the HB solver can be extended to 3D flow-structure dynamics without compromising efficiency and accuracy.  相似文献   

11.
We discuss the experimental vortex wake of a flexible circular cylinder undergoing vortex-induced vibration at low Reynolds number and a large cylinder aspect ratio. Hydrogen bubbles formed on the cylinder track the von Karman vortex cores. They show a characteristic ‘void’ structure. We propose a vortex skeleton model that includes a pinch-off of opposite-signed cores. Voids occurred at a node in streamwise vibration when close to an antinode in transverse cylinder vibration. A vibration model predicts the ratio of shedding frequency to natural cylinder vibration frequency necessary for void formation at specific spanwise locations.  相似文献   

12.
We employ passive flow control using two-dimensional hydrofoils to reduce vortex-induced vibrations (VIV) and drag on a cylinder of circular cross-section. We test the hypothesis that by using foils to bend the streamlines around the cylinder, and hence forcing the flow to approach potential flow-like patterns VIV and drag will be reduced. A systematic parametric search, first using groups of two and then four foils, shows that it is possible to completely eliminate vibrations and reduce the drag coefficient to about Cd=0.50 at sub-critical Reynolds numbers. This parametric search is conducted in conjunction with force measurement and particle image velocimetry on a fixed towed cylinder. The effectiveness of the foils in regards to VIV was further tested with an apparatus allowing free transverse vibrations of a towed cylinder.  相似文献   

13.
The detailed flow structure behind an impulsively started circular cylinder has been investigated experimentally. The Reynolds number based on the steady state velocity and the diameter of the cylinder was 500 to 3,000. This work is unique in that unsteady spatial velocities were measured simultaneously by a quantitative visualization technique — Laser Induced Photochemical Anemometry (LIPA). The surface vorticity at g/q = π/2 and vorticity distribution behind the cylinder in the Lagrangian coordinates (i.e. coordinates fixed on the cylinder) were calculated from the measured velocities. The surface vorticity shows in the early stage of flow development a close agreement with the previous results obtained by analytical and numerical approaches. The large-field velocity and vorticity information provides an insight into the formation process of the vortices downstream of the cylinder. In addition to the quantitative information, the results of visualized flow pattern obtained by LIPA technique are also presented. A preliminary version of this paper was presented at the Twelfth Symposium on Turbulence, University of Missouri-Rolla, Sept. 24–26, 1990  相似文献   

14.
 A fibre Bragg grating (FBG) sensor was proposed as an alternative to strain gauges to measure the strain ɛ of a vibrating cylinder in a uniform cross flow. In order to validate the measurements of the FBG sensor, the transverse fluctuating bending displacement Y of the cylinder was also measured using a laser vibrometer. The two measurements were found to be consistent in terms of the natural frequency of the fluid–structure system and the vortex shedding frequency. The spectral coherence between ɛ and Y at the same point of the cylinder attains 1 at these frequencies, thus indicating a near perfect correlation between the two quantities. When the transverse bending displacement is small, the measured ɛ and Y are linearly related. Therefore, the results indicate that the FBG sensor can be used with confidence to measure the fluctuating strain arising from the vortex-induced forces on a structure in a uniform cross flow. As such, it can be used in conjunction with a laser Doppler anemometer to study fluid–structure interactions in flow-induced vibration problems. Furthermore, it is expected that the FBG sensor, because of its physical uniqueness, will have an important role to play in the study of fluid–structure interaction problems with multiple structures arranged in an array. Received: 17 August 1998 / Accepted 27 January 1999  相似文献   

15.
The features of the wake behind a uniform circular cylinder atRe=200, which is just beyond the critical Reynolds number of 3-D transition, are investigated in detail by direct numerical simulations by solving 3-D incompressible Navier-Stokes equations using mixed spectral-spectral-element method. The high-order splitting algorithm based on the mixed stiffly stable scheme is employed in the time discretization. Due to the nonlinear evolution of the secondary instability of the wake, the spanwise modes with different wavelengths emerge. The spanwise characteristic length determines the transition features and global properties of the wake. The existence of the spanwise phase difference of the primary vortices shedding is confirmed by Fourier analysis of the time series of the spanwise vorticity and attributed to the dominant spanwise mode. The spatial energy distributions of various modes and the velocity profiles in the near wake are obtained. The numerical results indicate that the near wake is in 3-D quasi-periodic laminar state with transitional behaviors at this supercritical Reynolds number. The project supported by the State Key Fundamental Research Project of “Large Scale Scientific Computation Research” (G199903281)  相似文献   

16.
The turbulent flow around two cylinders in tandem at the sub-critical Reynolds number range of order of 105 and pitch to diameter ratio of 3.7 is investigated by using time-resolved Particle Image Velocimetry (TRPIV) of 1 kHz and 8 kHz. The bi-stable flow regimes including a flow pattern I with a strong vortex shedding past the upstream and the downstream cylinder, as well as a flow pattern II corresponding to a weak alternating vortex shedding with reattachment past the upstream cylinder are investigated. The structure of this “reattachment regime” has been analyzed in association with the vortex dynamics past the downstream cylinder, by means of POD and phase-average decomposition. These elements allowed interconnection among all the measured PIV planes and hence analysis of the reattachment structure and the flow dynamics past both cylinders. The results highlight fundamental differences of the flow structure and dynamics around each cylinder and provide the ‘gap’ flow nature between the cylinders. Thanks to a high-speed camera of 8 kHz, the shear-layer vortices tracking has been possible downstream of the separation point and the quantification of their shedding frequency at the present high Reynolds number range has been achieved. This issue is important regarding fluid instabilities involved in the fluid–structure interaction of cylinder arrays in nuclear reactor systems, as well as acoustic noise generated from the tandem cylinders of a landing gear in aeronautics.  相似文献   

17.
Experimental investigations have been carried out to examine the effects of triple-starting helical grooves on the drag of fixed circular cylinders and the vortex-induced vibration of elastically supported cylinders. For the elastically supported cylinder, the Reynolds number varied from 1.3×104 to 4.6×104, whilst for the fixed cylinder from 3.1×104 to 3.75×105. A comparative approach which allows direct comparisons of the results was adopted where two cylinders of identical dimensions and physical properties with or without helical surface grooves were tested in exactly same experimental set-ups. In the elastically supported cylinder tests, the cylinders were attached to a vertically cantilevered supporting rod and towed in a towing tank. Both the in-line and cross-flow vibrations were permitted. In the fixed cylinder tests, the cylinders were supported on rigid vertical struts and towed horizontally in the same towing tank. It is found that for the case investigated the helical grooves were effective in suppressing the vortex-induced cross-flow vibration amplitudes with the peak amplitude reduced by 64%. Drag reductions of up to 25% were also achieved in the sub-critical Reynolds number range tested in the study for the fixed cylinders.  相似文献   

18.
Staggered arrays of short cylinders, known as pin?Cfins, are commonly used as a heat exchange method in many applications such as cooling electronic equipment and cooling the trailing edge of gas turbine airfoils. This study investigates the near wake flow as it develops through arrays of staggered pin fins. The height-to-diameter ratio was unity while the transverse spacing was kept constant at two cylinder diameters. The streamwise spacing was varied between 3.46 and 1.73 cylinder diameters. For each geometric arrangement, experiments were conducted at Reynolds numbers of 3.0e3 and 2.0e4 based on cylinder diameter and velocity through the minimum flow area of the array. Time-resolved flowfield measurements provided insight into the dependence of row position, Reynolds number, and streamwise spacing. Decreasing streamwise spacing resulted in increased Strouhal number as the near wake length scales were confined. In the first row of the bundle, low Reynolds number flows were mainly shear-layer-driven while high Reynolds number flows were dominated by periodic vortex shedding. The level of velocity fluctuations increased for cases having stronger vortex shedding. The effect of streamwise spacing was most apparent in the reduction of velocity fluctuations in the wake when the spacing between rows was reduced from 2.60 diameters to 2.16 diameters.  相似文献   

19.
The division of flow regimes in a square cylinder wake at various angles of attack (α) is studied. This study provides evidence of the existence of modes A and B instabilities in the wake of an inclined square cylinder. The critical Reynolds numbers for the inception of these instability modes were identified through the determination of discontinuities in the Strouhal number versus Reynolds number curves. The spectra and time traces of wake streamwise velocity were observed to display three distinct patterns in different flow regimes. Streamwise vortices with different wavelengths at various Reynolds numbers were visualized. A PIV technique was employed to quantitatively measure the parameters of wake vortices. The wavelengths of the streamwise vortices in the modes A and B regimes were measured by using the auto-correlation method. From the present investigation, the square cylinder wake at various angles of attack undergoes a similar transition path to that of a circular cylinder, although various quantitative parameters measured which include the critical Reynolds numbers, spanwise wavelength of secondary vortices, and the circulation and vorticity of wake vortices all show an α dependence.  相似文献   

20.
The results are given of experimental investigations into the change in the structure of the secondary steady flows near a circular cylinder vibrating in a fluid at rest in the direction perpendicular to its axis in a wide range of vibration amplitudes at high Reynolds numbers. For vibration amplitudes less than the cylinder diameter, not only viscous waves but also four vortices are generated near the surface of the cylinder and four steady flows at some distance from it. During a period of the vibration, the vortices near the cylinder change their shape and position. At vibration amplitudes comparable with the cylinder diameter, the vortices become separated and form two vortex streets. If the vibration amplitude is increased further, the streets bifurcate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 190–192, July–August, 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号