首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
涂铁基非晶涂层的磨粒磨损性能研究   总被引:1,自引:0,他引:1  
用电弧喷涂技术在Q235钢基体上制备一种高非晶含量的Fe基合金涂层.用MLS-225型湿砂橡胶轮磨损试验机评价铁基复合涂层的磨粒磨损性能,利用光学显微镜、扫描电子显微镜和X射线衍射仪对涂层的显微组织结构、磨损表面进行分析.结果表明,涂层中含有一定量的非晶相,通过Verdon方法对XRD图谱进行Pseudo-Voigt函数拟合,计算得出涂层的非晶相含量约为49%.涂层呈典型的层状组织结构,结构致密,孔隙率低,具有很高的硬度和耐磨性,显微硬度在HV900~1 050范围内,属于硬质涂层.涂层耐磨粒磨损性能为Q235钢的12.2倍.其磨损机制主要为脆性剥落.  相似文献   

2.
含WC陶瓷相电弧喷涂层耐磨粒磨损性能的研究   总被引:6,自引:0,他引:6  
采用电弧喷涂含WC-CoNi金属陶瓷粉末的粉芯丝材,在低碳钢基体上制备铁基复合涂层,采用MLS-225型湿砂橡胶轮磨损试验机评价铁基复合涂层的耐磨粒磨损性能,利用光学显微镜、扫描电子显微镜和X射线衍射仪对涂层的显微组织结构、磨损表面及其相组成进行分析.结果表明:含WC陶瓷相涂层的耐磨粒磨损性能较好,相对Q235钢提高约9倍;当粉芯中WC质量分数低于25%时,随着WC含量增加,涂层的硬度和耐磨性增加;当粉芯中WC质量分数超过25%后,涂层的耐磨性有所下降;电弧喷涂含WC陶瓷相涂层的磨损机制主要为硬质相的脆性剥离和轻微的塑性切削,在磨粒磨损条件下硬度较低的金属基体先磨损,硬度较高的WC和Fe3B硬质相起到阻止石英砂磨损的作用,从而降低了涂层的磨损.  相似文献   

3.
电弧喷涂纳米结构涂层的组织与磨损性能   总被引:3,自引:1,他引:2  
基于机器人自动化高速电弧喷涂技术在45#钢基体上制备了铁基纳米结构涂层.研究了纳米结构涂层在不同磨损速度?不同载荷下的磨损行为,并利用3Cr13涂层进行对比试验.采用扫描电镜?能谱分析仪,透射电镜和X射线衍射仪等设备对涂层的组织结构进行了表征,利用纳米压痕仪对涂层的力学性能进行了分析.结果表明:涂层的组织主要由非晶相和α(Fe,Cr)相纳米晶组成;平均尺寸为46nm的α(Fe,Cr)相纳米晶均匀分布于非晶基体内.涂层的组织均匀,结构致密,平均孔隙率含量为1.7%.纳米结构涂层具有较高的显微硬度;随着磨损速度升高,载荷增加,纳米结构涂层的磨损量也随之增加.纳米结构涂层具有良好的耐磨性,同一磨损条件下,其相对耐磨性为3Cr13涂层的2.6倍.纳米结构涂层主要磨损机制为脆性断裂机制.  相似文献   

4.
Fe基非晶纳米晶电弧喷涂层的摩擦学性能   总被引:1,自引:0,他引:1  
采用自动化高速电弧喷涂技术在AZ91镁合金基体上制备了FeCrBSiMnNbW非晶纳米晶涂层.研究了涂层材料在干摩擦条件下的摩擦学性能.采用配备有能谱分析仪(EDAX)的扫描电子显微镜(SEM)和X射线衍射仪(XRD)对涂层的微观组织结构进行了表征.采用显微硬度计和纳米压痕仪对涂层的力学性能进行了分析,摩擦磨损试验在UMT-2型摩擦磨损试验机上进行,并采用三维白光干涉表面形貌仪(Phase Shift MicroWAM-3D)测定磨损量.结果表明:涂层组织均匀、结构致密、氧化物含量低,涂层主要由非晶相和纳米晶相组成;涂层具有较高的硬度和弹性模量;在相同的试验条件下,非晶纳米晶合金涂层的相对耐磨性是传统3Cr13涂层的3倍;磨损机制主要为典型的脆性剥落.  相似文献   

5.
油润滑条件下FeBSiNb非晶涂层磨损性能研究   总被引:1,自引:0,他引:1  
基于机器人自动化高速电弧喷涂技术在45#钢基体上制备了FeBSiNb非晶涂层.研究了非晶涂层在油润滑条件下磨损时间、线速度和载荷对涂层的磨损行为.采用扫描电镜(SEM)、能谱分析仪(EDAX)和X射线衍射仪(XRD)等仪器对涂层的组织结构进行了表征,利用纳米压痕仪对涂层的微观力学性能进行了分析.结果表明:涂层具有非晶态结构,组织均匀,层状结构紧凑,具有较低的孔隙率(1.4%)和较高的显微硬度(16.42 GPa).随着磨损速度升高,载荷增加,涂层的磨损率也随之增加.FeBSiNb非晶涂层具有良好的耐磨性,同一磨损条件下,其相对耐磨性为3Cr13涂层的6倍.FeBSiNb非晶涂层的磨损机制主要为脆性疲劳剥落.  相似文献   

6.
Nano-Ni粉体对Fe/WC涂层组织和性能的影响   总被引:1,自引:1,他引:0  
在Fe/WC喷涂材料中添加不同量的Nano-Ni粉体,采用亚音速火焰喷涂技术在Q235基体上制备涂层,利用光学显微镜、扫描电子显微镜、X射线衍射仪等设备进行显微组织、表面形貌观察及物相分析,利用MM-W1磨损试验机和HXD-1000TM型显微硬度仪对涂层的性能进行测试.结果表明:Nano-Ni粉体可以细化涂层组织,提高涂层的致密性,随着Nano-Ni粉体添加量的增大,相应的力学性能均得到提高,在涂层形成过程中Nano-Ni粉体与喷涂材料中的其他成分形成了一些新相,如Fe-Ni固溶体和CeNi3,这些新相为改善涂层组织和提高涂层的力学性能起到积极作用.  相似文献   

7.
铜表面激光熔覆NiCrWB合金的组织结构与耐磨性能研究   总被引:3,自引:3,他引:0  
采用高能量密度激光重熔NiCrWB喷涂涂层的方式制备熔覆层,用XRD分析熔覆层和喷涂层的物相组成,用扫描电镜和金相显微镜分析涂层和熔覆层组织形貌以及磨损表面形貌.研究了涂层组织形貌、物相组成对涂层耐磨性能的影响,分析了喷涂层和熔覆层的磨损机理.结果表明:对于NiCrWB材料来说,组织结构对耐磨性能的影响要大于硬度对耐磨性能的影响.显微硬度较低的熔覆层由于组织致密均匀,其耐磨性能明显优于组织缺陷较多的喷涂层.通过扫描电镜观察发现,喷涂层的磨损表面出现较多的疲劳裂纹、凹坑、磨粒和较深的磨痕,推断喷涂层颗粒脱落是由于在周期载荷作用下,裂纹在表层和亚表层扩展后连接,使得裂纹包围区域颗粒脱落.而熔覆层中的裂纹是由于磨损表面发生塑性变形而形成的.  相似文献   

8.
氧化铈对镍基碳化钛复合涂层微观结构及摩擦学性能影响   总被引:3,自引:0,他引:3  
探讨了激光熔覆TiC4复合陶瓷涂层微观结构特征,研究了氧化铈对涂层显微组织、显微硬度及摩擦学性能的影响.在45#钢基体上制作了Ni、Cr、TiC4复合陶瓷涂层及氧化铈改性的复合涂层,用X射线衍射仪(XRD)、分析型扫描电镜(ASEM)、显微硬度计及摩擦磨损试验机对涂层组成、显微组织、显微硬度及摩擦学性能进行了分析.结果表明:利用激光熔覆方法制作的TiC4陶瓷层具有典型的包覆相和硬质点相结构,加入适量的氧化铈能有效防止TiC4结晶过程中颗粒桥接,阻止TiC4结晶成枝状结构,细化了TiC4颗粒,同时也使其分布更加离散.当添加氧化铈的质量分数为0.50%~3.0%时,TiC4颗粒离散效果最好,此时涂层显微硬度分布均匀,较不添加氧化铈涂层相比,显微硬度提高了10%左右,当添加氧化铈的质量分数超过4.0%,TiC4颗粒发生桥接,成枝状结构,且出现聚集,硬度分布离散度加大.磨损试验结果表明氧化铈能改善涂层的干摩擦特性,有效防止涂层片层状脱落,但对涂层耐磨性没有明显的改进,涂层呈现黏着磨损特征.  相似文献   

9.
以FeCrNiBSi与Cr3C2粉末为原料,采用等离子熔覆技术在Q235表面通过原位反应制备了高体积分数六方柱(Cr,Fe)7C3碳化物增强Fe基涂层,利用光学显微镜(OM)、扫描电镜(SEM)、电子能谱(EDS)、XRD射线衍射观察分析了涂层的显微组织结构,同时在M-2000型磨损试验机上考察了恒载荷及变载荷涂层滑动干摩擦时的耐磨性能.结果表明:涂层主要组织为初生(Cr,Fe)7C3碳化物、α-Fe及末溶的Cr3C2,其中(Cr,Fe)7C3在整个涂层中的分布较均匀,平均体积分数达75%,显微硬度为HV0.5(1218~1524),由于高体积分数硬质相的存在,涂层恒载荷下相对耐磨性为纯FeCrNiBSi涂层的9倍,变载荷下相对耐磨性为纯FeCrNiBSi涂层的14倍,涂层的磨损机制为(Cr,Fe)7C3碳化物在高切向应力作用下产生裂纹,发生脆性剥落,随着载荷的增加,逐渐由磨粒磨损转变为氧化磨损.  相似文献   

10.
为提高304不锈钢的摩擦学性能,将质量分数为30%和60%的球形WC添加到铁基复合粉末,采用等离子堆焊技术在其表面制备了WC增强铁基复合涂层.分析其显微组织结构、物相和显微硬度,在恒定载荷(50 N)和滑动速度(20 mm/s)下进行干摩擦磨损试验,研究其干滑动摩擦学性能.结果表明:富含Cr的固溶强化奥氏体、高硬度的Cr7C3和WC增强相的存在,提高了WC增强铁基堆焊层的硬度,30%WC和60%WC涂层的显微硬度达到HV0.2665和HV0.2724,比铁基涂层提高了21.1%和31.9%,是304基体的3.7和4倍;30%WC和60%WC涂层的摩擦系数和磨损率分别为0.59和2.639×10~(–6) mm~3·N~(–1)·m~(–1),0.42和1.111×10~(–6) mm~3·N~(–1)·m~(–1).30%WC和60%WC涂层均表现出优异的耐磨性能,其磨损机理分别为黏着磨损和二体磨粒磨损的混合机制,和三体磨粒磨损.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号