首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
Two types of implicit algorithms have been improved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on triangular grids. A block lower-upper symmetric Gauss-Seidel (BLU-SGS) approach is implemented as a nonlinear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the original LU-SGS approach. Both implicit schemes have the significant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock transition and the designed high-order accuracy simultaneously.  相似文献   

2.
Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.  相似文献   

3.
Developing shock-capturing difference methods   总被引:1,自引:1,他引:1  
A new shock-capturing method is proposed which is based on upwind schemes and flux-vector splittings. Firstly, original upwind schemes are projected along characteristic directions. Secondly, the amplitudes of the characteristic decompositions are carefully controlled by limiters to prevent non-physical oscillations. Lastly, the schemes are converted into conservative forms, and the oscillation-free shock-capturing schemes are acquired. Two explicit upwind schemes (2nd-order and 3rd-order) and three compact upwind schemes (3rd-order, 5th-order and 7th-order) are modified by the method for hyperbolic systems and the modified schemes are checked on several one-dimensional and two-dimensional test cases. Some numerical solutions of the schemes are compared with those of a WENO scheme and a MP scheme as well as a compact-WENO scheme. The results show that the method with high order accuracy and high resolutions can capture shock waves smoothly.  相似文献   

4.
A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent non-physical oscillations across discontinuity. Both limiters can ensure the nonlinear compact schemes TVD property. Two compact TVD (CTVD) schemes were tested, one is third-order accuracy, and the other is fifth-order. The performance of the numerical algorithms was assessed by one-dimensional complex waves and Riemann problems, as well as a two-dimensional shock-vortex interaction and a shock-boundary flow interaction. Numerical results show their high-order accuracy and high resolution, and low oscillations across discontinuities.  相似文献   

5.
A third-order numerical scheme is presented to give approximate solutions to multi-dimensional hyperbolic conservation laws only using modified coefficients of an essentially non-oscillatory (MCENO) scheme without increasing the base points during construction of the scheme. The construction process shows that the modified coefficient approach preserves favourable properties inherent in the original essentially nonoscillatory (ENO) scheme for its essential non-oscillation, total variation bounded (TVB), etc. The new scheme improves accuracy by one order compared to the original one. The proposed MCENO scheme is applied to simulate two-dimensional Rayleigh-Taylor (RT) instability with densities 1:3 and 1:100, and solve the Lax shock-wave tube numerically. The ratio of CPU time used to implement MCENO, the .third-order ENO and fifth-order weighed ENO (WENO) schemes is 0.62:1:2.19. This indicates that MCENO improves accuracy in smooth regions and has higher accuracy and better efficiency compared to the original ENO scheme.  相似文献   

6.
Performance of the LSFD method is compared with conventional FD schemes. Generally, 9-point stencils for 2D cases and 27-point stencils for 3D cases are used for the approximation of the first and second order derivatives obtained with conventional central difference schemes. When the same stencils are used, explicit LSFD formulations for approximation of the first and second order derivatives are presented. The LSFD formulations are actually a combination of conventional central difference schemes along relevant mesh lines. It has been found that LSFD formulations need much less iteration steps than the conventional FD schemes to converge, and the ratio of mesh spacing in the x and y directions is an important parameter in the LSFD application, with a great impact on stability of LSFD computation.  相似文献   

7.
8.
A group of asymmetric difference schemes to approach the Korteweg-de Vries(KdV)equation is given here.According to such schemes,the full explicit difference scheme and the fun implicit one,an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed.The scheme is linear unconditionally stable by the analysis of linearization procedure,and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.  相似文献   

9.
The catalyst layer (CL) of proton exchange mem-brane fuel cell (PEMFC) involves various particles and pores in meso-scale, which has an important effect on the mass, charge (proton and electron) and heat transport coupled with the electrochemical reactions. The coarse-grained molecular dynamics (CG-MD) method is employed as a meso-scale structure reconstruction technique to mimic the self-organization phenomena in the fabrication steps of a CL. The meso-scale structure obtained at the equilibrium state is further analyzed by molecular dynamic (MD) software to provide the necessary microscopic parameters for understanding of multi-scale and-physics processes in CLs. The primary pore size distribution (PSD) and active platinum (Pt) surface areas are also calculated and then compared with the experiments. In addition, we also highlight the implementation method to combine microscopic elementary kinetic reaction schemes with the CG-MD approaches to provide insight into the reactions in CLs. The concepts from CG modeling with particle hydrodynamics (SPH) and the problems on coupling of SPH with finite element modeling (FEM) methods are further outlined and discussed to understand the effects of the meso-scale transport phenomena in fuel cells.  相似文献   

10.
In order to formulate the equations for the study here, the Fourier expansions upon the system of orthonormal polynomials areused.It may be considerably convenient to obtain the expressions of displacements as well as stresses directly from the solutions.Based on the principle of virtual work the equilibrium equations of various orders are formulated. In particular, the system of third-order is given in detail, thus providing the reference for accuracy analysis of lower-order equations. A theorem about the differentiation of Legendre series term by term is proved as the basis of mathematical analysis. Therefore the functions used are specified and the analysis rendered is no longer a formal one.The analysis will show that the Kirchhoff-Love’s theory is merely of the first-order and the theory which includes the transverse deformation but keeps the normal straight is essentially of the first order, too.  相似文献   

11.
Hermite weighted essentially non‐oscillatory (HWENO) methods were introduced in the literature, in the context of Euler equations for gas dynamics, to obtain high‐order accuracy schemes characterized by high compactness (e.g. Qiu and Shu, J. Comput. Phys. 2003; 193 :115). For example, classical fifth‐order weighted essentially non‐oscillatory (WENO) reconstructions are based on a five‐cell stencil whereas the corresponding HWENO reconstructions are based on a narrower three‐cell stencil. The compactness of the schemes allows easier treatment of the boundary conditions and of the internal interfaces. To obtain this compactness in HWENO schemes both the conservative variables and their first derivatives are evolved in time, whereas in the original WENO schemes only the conservative variables are evolved. In this work, an HWENO method is applied for the first time to the shallow water equations (SWEs), including the source term due to the bottom slope, to obtain a fourth‐order accurate well‐balanced compact scheme. Time integration is performed by a strong stability preserving the Runge–Kutta method, which is a five‐step and fourth‐order accurate method. Besides the classical SWE, the non‐homogeneous equations describing the time and space evolution of the conservative variable derivatives are considered here. An original, well‐balanced treatment of the source term involved in such equations is developed and tested. Several standard one‐dimensional test cases are used to verify the high‐order accuracy, the C‐property and the good resolution properties of the model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This work describes the implementation and analysis of high‐order accurate schemes applied to high‐speed flows on unstructured grids. The class of essentially non‐oscillatory schemes (ENO), that includes weighted ENO schemes (WENO), is discussed in the paper with regard to the implementation of third‐ and fourth‐order accurate methods. The entire reconstruction process of ENO and WENO schemes is described with emphasis on the stencil selection algorithms. The stencils can be composed by control volumes with any number of edges, e.g. triangles, quadrilaterals and hybrid meshes. In the paper, ENO and WENO schemes are implemented for the solution of the dimensionless, 2‐D Euler equations in a cell centred finite volume context. High‐order flux integration is achieved using Gaussian quadratures. An approximate Riemann solver is used to evaluate the fluxes on the interfaces of the control volumes and a TVD Runge–Kutta scheme provides the time integration of the equations. Such a coupling of all these numerical tools, together with the high‐order interpolation of primitive variables provided by ENO and WENO schemes, leads to the desired order of accuracy expected in the solutions. An adaptive mesh refinement technique provides better resolution in regions with strong flowfield gradients. Results for high‐speed flow simulations are presented with the objective of assessing the implemented capability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Hybrid schemes are very efficient for complex compressible flow simulation. However, for most existing hybrid schemes in literature, empirical problem‐dependent parameters are always needed to detect shock waves and hence greatly decrease the robustness and accuracy of the hybrid scheme. In this paper, based on the nonlinear weights of the weighted essentially non‐oscillatory (WENO) scheme, a novel weighting switch function is proposed. This function approaches 1 with high‐order accuracy in smooth regions and 0 near discontinuities. Then, with the new weighting switch function, a seventh‐order hybrid compact‐reconstruction WENO scheme (HCCS) is developed. The new hybrid scheme uses the same stencil as the fifth‐order WENO scheme, and it has seventh‐order accuracy in smooth regions even at critical points. Numerical tests are presented to demonstrate the accuracy and robustness of both the switch function and HCCS. Comparisons also reveal that HCCS has lower dissipation and less computational cost than the seventh‐order WENO scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In this article, we have devised a new reference smoothness indicator for third‐order weighted essentially non‐oscillatory (WENO) scheme to achieve desired order of convergence at critical points. In the context of the weighted essentially non‐oscillatory scheme, reference smoothness indicator is constructed in such a way that it satisfies the sufficient condition on the weights for the third‐order convergence. The goal is to construct a reference smoothness indicator such that the resulted scheme have to achieve the required order of accuracy even if the first two derivatives vanish but not the third derivative. The construction of such reference smoothness indicator is not possible through a linear combination of local smoothness indicators only. We have proposed a reference smoothness indicator to be of the fourth order of accuracy on three‐point stencil that contains the linear combination of the first derivative information of the local and global stencils. The performance enhancement of the WENO scheme through this reference smoothness indicator is verified through the standard numerical experiments. Numerical results indicate that the new scheme provides better results in comparison with the earlier third‐order WENO schemes like WENO‐JS and WENO‐Z. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The paper presents a Discontinuous Galerkin γ‐BGK (γ‐DGBGK) method for compressible multicomponent flow simulations by coupling the discontinuous Galerkin method with a γ‐BGK scheme based on WENO limiters. In this γ‐DGBGK method, the construction of the flux in the DG method is based on the kinetic scheme which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous terms in the flux formulation at cell interfaces. WENO limiters are used to obtain uniform high‐order accuracy and sharp non‐oscillatory shock transition, and time accuracy obtained by integration for the flux function at the cell interface. Numerical examples in one and two space dimensions are presented to illustrate the robust and accuracy of the present scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper a new class of finite difference schemes - the Weighted Compact Schemes are proposed. According to the idea of the WENO schemes, the Weighted Compact Scheme is constructed by a combination of the approximations of derivatives on candidate stencils with properly assigned weights so that the non-oscillatory property is achieve when discontinuities appear. The primitive function reconstruction method of ENO schemes is applied to obtain the conservative form of the Weighted Compact Scheme. This new scheme not only preserves the characteristic of standard compact schemes and achieves high order accuracy and high resolution using a compact stencil, but also can accurately capture shock waves and discontinuities without oscillation. Numerical examples show the new scheme is very promising and successful.  相似文献   

17.
加权型紧致格式与加权本质无波动格式的比较   总被引:3,自引:3,他引:0  
张树海 《力学学报》2016,48(2):336-347
线性紧致格式和加权本质无波动格式是两种典型的高阶精度数值格式,它们各有优缺点.线性紧致格式在具有高阶精度的同时,格式的分辨率也比较高,耗散低,是计算多尺度流场结构的较好格式,但是不能计算具有强激波的流场.加权本质无波动格式是一种高阶精度捕捉激波格式,鲁棒性好,但耗散比较高,分辨率也不理想.近年来,在莱勒的线性紧致格式基础上,采用加权本质无波动格式捕捉激波思想,发展了一系列加权型紧致格式.本文较全面地比较了加权型紧致格式和加权本质无波动格式,包括构造方法、鲁棒性、分辨率、耗散特性、收敛特性以及并行计算效率.结果表明,现有的加权型紧致格式基本保持了加权本质无波动格式的性质,对于气动力等宏观量的计算,比加权本质无波动格式没有明显的优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号