首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 259 毫秒
1.
Studies were conducted in a laboratory glass-sided soil bin with dry compact loam soil (c = 0.02 kPa, Φ = 20° and cone index 210 kPa) with the specific objective of observing the effect of flat tine rake angle and aspect ratio on soil failure patterns. The tine was moved in the soil in a quasi-static condition and soil failure patterns were observed through a glass window. Tine rake angles of 50°, 90° and 130° were used while aspect ratio effects were studied by varying both width and depth of the tine. Individual effects of width and depth were investigated by maintaining a constant aspect ratio of 2.0 but varying width and depth. Results obtained indicated that soil failure patterns are affected by tine design parameters. Soil failure patterns were observed to be of progressive shear type in all cases. For 50° rake angle tines, the patterns consisted of inclined shear lines starting from the tine tip and gradually moving upwards towards the horizontal soil surface, intersecting it at an average failure angle of 32°. In the case of 90° rake angle tines, the inclined shear surface was at a distance from the tine tip whereas, for 130° rake angle tines, prismatic-shaped stationary soil wedges were formed adjacent to the tine. Failure angles for the 90° and 130° rake angle tines were almost the same as those for 50° rake angle tines. The results of this study also indicated that aspect ratio alone cannot account for changes in soil failure patterns, their corresponding soil reactions, forward rupture or surcharge profiles. The effects are mainly due to the individual changes in width and depth. There were no distinct zones as described in the passive soil pressure theory. Soil failures were in regular cycles resulting in corresponding variations in the soil reactions on the tines.  相似文献   

2.
The cutting of soil by narrow blades   总被引:3,自引:0,他引:3  
The available models for predicting the forces acting on a narrow soil cutting blade have required separate measurements of the shape of the three-dimensional soil failure pattern ahead of the blade. It is proposed that a three-dimensional model consisting of straight line failure patterns in the soil can be used to predict both the draft forces and the volume of soil disturbed in front of a narrow blade. Limit equilibrium mechanics equations are written for the soil wedges in terms of an unknown angle of the failure zone and the theoretical draft force is minimized with respect to this angle. Force factors are thus found which are of the type to fit Reece's general earthmoving equation, but which vary with the width to depth ratio of the blade as well as with the rake angle of the blade and the friction angle of the soil. In addition the approximate geometry of the three-dimensional failure pattern in the soil is predicted for varying blade shapes and soil strengths. This allows the design of simple tools on the basis of their draft force requirements and their soil cutting efficiency. The draft force predictions and failure geometry calculations are shown to have considerable verification by experimental results.  相似文献   

3.
Experiments were conducted with a single powered disk in a laboratory soil bin containing Bangkok clay soil with an average moisture content of 18% (db) and 1100 kPa cone index. The disk was 510 cm in diameter and 560 mm in radius of concavity. During the tests the disk angle was varied from 20° to 35°, ground speed from 1 to 3 km/h and rotational speed from 60 to 140 rpm. The working depth was kept constant at 12 cm. The vertical, horizontal and lateral reactions of the soil were measured by force transducers. The forward and rotational speeds were recorded. It was observed that disk angle, rotational speed and ground speed had significant effects on soil reactive forces and power requirement. With a small disk angle, low ground speed, and high rotational speed, the soil longitudinal reactive force was a pushing force and became a resistive one at larger disk angles and ground speeds. The soil transverse reactive force increased with an increase of rotational and ground speed but decreased with the increase of disk angle, whereas the vertical relative force increased only with the increase of ground speed but decreased with the increase of rotational speed and disk angle. It was found that the powered disk required the least power at a disk angle of 30° and rotational speed between 80 and 100 rpm. Increase in ground speed from 1 to 3 km/h increased the total power requirement by 31.8%. Upon driving the disk forward, the draft reduced considerably compared to that of the free-rolling disk. By driving the disk in the reverse direction, the draft reduced slightly. At a disk angle of 30°, rotational speed of 100 rpm, and ground speed of 3 km/h, the total power requirement of the forward-driven disk was 65% higher than that of the free-rolling disk. The predicted engine power of the forward-driven disk, however, was only 21% higher than that of the free-rolling one owing to the more efficient power transmission through the PTO, as opposed to the drawbar. The effects of reverse driving and free rolling of the disk were also studied.  相似文献   

4.
This paper compares the results of tests which examined the effect of chisel plough wing geometry on tillage forces with those predicted by the Universal Earthmoving Equation as presented in E. McKyes' book Soil Cutting and Tillage, published by Elsevier (1985). The tests were conducted in the SAIT Tillage Test Track (an outside continous soil bin which contains a sandy loam soil) and in two field soild, one sandy loam and the other a red brown earth. The tests were conducted using a range of speeds from 5 to 15 km/h and at depths of 50 and 70 mm. The tests compared the effects of varying share wing width and rake angle. The comparison of the measured and predicted draft and vertical force responses showed a good correlation between the Universal Earthmoving Equation predictions and the measured width responses, but it did not always predict the correct rake angle responses.  相似文献   

5.
Experimental studies were carried out to investigate the fluid flow and heat transfer around a heated circular cylinder which was placed at various distances of a wall boundary with different geometries (flat or curved plate) with subcritical Reynolds number ranging from 3.5×103 to 104. The effects of plate geometry (aspect ratio: W|H=1.0,1.5 and 2.0, and rim angle, φ=0°,60°,90°, and 120°) and gap ratio, (G|D=0.0,0.86,2.0,7.0,10.0) on the fluid flow and heat transfer characteristics (static pressure around cylinder surface, wake width, base pressure, pressure drag coefficients, velocity distribution, and both local and mean Nusselt numbers) were presented. Also flow visualization was carried out to illustrate the flow patterns around the cylinder at various gap ratios (G|D). It was found that the heat transfer and fluid flow characteristics are dependent on the plate geometry at all tested gap ratios, except for G|D=7.0 and 10.0, they are independent of the plate geometry.  相似文献   

6.
A dynamic model for soil cutting by blade and tine   总被引:1,自引:0,他引:1  
A dynamic model for soil cutting resistance prediction by blade and tine was developed, taking account of shear rate effects both on soil shear strength and soil-metal friction, besides the conventional soil slice inertia, for both brittle and flow failure of soil. The model was verified with a series of tests in a soil bin with a blade and a tine, and the results were acceptable.  相似文献   

7.
As part of an investigation into impact damage on soil-working implements, a glass-sided model box has been used to study the motion of 10, 50 and 100 mm diameter hemispheres in sand as a 38 mm wide tine inclined at 45° approaches. The observations were made using high-speed photography. It was found that the sand did not always cause the hemisphere to move before contact with the tine, and that motion was determined by the position of the centre of the hemisphere relative to the boundary of soil disturbance ahead of the tine. This effect was independent of velocity. A minimum size of hemisphere was found below which motion always began before contact was made with the tine. In the particular arrangement used this was about 20 mm. Movement of the hemisphere before contact reduced the contact stresses and the practical implications of this are discussed.  相似文献   

8.
The relation between forces applied to the soil and the resultant soil reaction was studied in dry clay soils under a quasi-static condition. As a tine advanced in dry compact clay soils at 5.2% dry basis moisture content, masses of soil collapsed one by one in front of the tine. The horizontal and vertical components of soil resistance measured were cyclic and in phase, with distinct peak and trough values. The peak values and trough values indicated the soil stress conditions before and immediately after each failure occurred. The frequency of failure depended on the size of the tine. The magnitude of the peak values depended on level of compaction and trough values on density of collapsed mass. The paper presents the details of observations.  相似文献   

9.
The performance of a vertical tine was investigated at various water contents during wetting and drying cycles in a clay-loam soil. Results showed that at a given water content the soil during the wetting cycle failed by fracture mode and offered relatively more draft. Soil during the drying cycle cracked, and when a tine was pushed through the soil, it failed along the cracks. This failure mode was referred to as preferential fracture. For a given water content, tine forces and soil shear strength properties were found to be greater during the wetting cycle than the drying cycle, which leads to the conclusion that there is a hysteresis effect in soil caused by drying stress induced by seasonal wetting and drying.  相似文献   

10.
Free convection from a tilted rectangular enclosure heated at the bottom wall and vented by uniform slots opening at different walls of the enclosure was experimentally investigated. The experiments were carried out to study the effects of venting arrangement, opening ratio and enclosure's tilt angle on the passive cooling of the enclosure. The experiments were carried out at a constant heat flux of 250 W/m2 and for enclosure tilt angles ranging from 0° to 180°. Three different venting arrangements of the air from the enclosure were studied: (1) top-venting arrangement, (2) side-venting arrangement, and (3) top and side-venting arrangement. Each venting arrangement was studied at different opening ratios of 1, 0.75, 0.5 and 0.25. The results showed that: (1) for top-venting arrangement, the Nusselt number decreases as the tilt angle of the enclosure increases, (2) for side-venting and side and top-venting arrangements, the Nusselt number increases as the tilt angle increases in the range [0°, 90°], then it decreases with the increase of the tilt angle, (3) for the three venting arrangements and at any tilt angle, the Nusselt number increases with the increase of the opening ratio of the slots, (4) for any tilt angle and at any opening ratio, the top and side-venting arrangement has the highest rate of cooling of the enclosure, and (5) for small tilt angles, the rate of cooling of the enclosure for top-venting arrangement was higher than that for side-venting arrangement, but with increasing tilt angle, the rate of cooling for side-venting arrangement becomes higher than that for top-venting arrangement. Correlations were developed for the three venting arrangements to predict the average Nusselt number of the enclosure in terms of the opening ratio and the enclosure tilt angle.  相似文献   

11.
一致输入作用下土层的地震反应分析   总被引:4,自引:0,他引:4  
假定土层为线性粘弹性介质,在频域内采用有限元法分析了均匀土层中有限土域的取值范围对计算精度的影响。在一致输入作用下,主要探讨了土层地震反应随不同侧向人工边界、迫振频率、阻尼和土层长深比的变化规律。在此基础上,得到直接有限元法进行土层地震反应分析的经验计算范围。最后对一河谷地形的土层进行地震反应分析,计算表明在进行土层地震反应分析时,采用本文土层范围取值来确定土域的计算范围可以得到满意的结果。为在应用直接有限元法进行土层地震反应计算时,确定有限土域范围提供依据。  相似文献   

12.
Sinusoidal vibratory tillage   总被引:2,自引:0,他引:2  
One dimensional sinusoidal vibratory tillage was analyzed theoretically and experimentally. A model was developed in which the instantaneous horizontal force on the tool was equal to a constant plus a linear function of tool velocity. The tool action was analyzed in three stages: (1) retraction of the tool, (2) compression of loose soil in front of the tool, and (3) cutting of undisturbed soil. The effect of tool mass was included, but edge effects between the tool and soil as the tool retracted were neglected. Equations were developed for the instantaneous horizontal force on the tool, average force and power requirements for the tool and ratio of average force and power on a vibrating tool to the average force and power for the same tool without vibration but moving at the same average velocity.

The model predicted the measured instantaneous tool force and average force accurately when the tool oscillated at 10 Hz and the soil failed by flow. At higher frequencies, the soil failed by multiple shear resulting in more pulverization. In this case, the model did not predict the instantaneous force accurately but did not predict the average force with reasonable accuracy. Multiple shear was more evident on the 45° tool than the 80° tool, the difference was attributed to the fact that the soil was more confined by the 80° tool. A maximum force reduction of 40% was observed at a contact ratio between 0.3 and 0.4. The power required for the vibrating tool was increased by a factor of 1.5 to 3.0 for the same contact ratio interval.  相似文献   


13.
Effects of oxidation and surface roughness on contact angle   总被引:1,自引:0,他引:1  
Contact angle is known to be a parameter that effects boiling. This study was undertaken to measure contact angle of high and low surface tension fluids on copper and aluminum surfaces.Data were taken for polished, oxidized, and rough surfaces. A simple, yet fairly accurate method of measuring the static equilibrium contact angle of a solid/liquid interface is presented. The principles of a line light source and tilting plate were modified and then combined in the design of this apparatus. The angles obtained and their variation with the solid surface properties were in good agreement with previously published data. The contact angle of distilled water o of the organic fluids and refrigerants tested were in the range of 2–5°. Roughness and oxidation reduce the contact angle. If the depth of the roughness is less than 0.5 μm contact angle. The apparatus is fairly simple in construction, is inexpensive, and has good reproductibity. The measured angles were then compared to those measured with the sessile drop method.  相似文献   

14.
Experiments have been carried out to determine the water depth required to entrain a given amount of air with a given circulating water flow discharging through a vertical pipe set in the flat bottom of a vessel. The circulation angle, , between the radial direction and the velocity vector far from discharge pipe was set at 0°, 10°, 30° or 60°.

It is shown that results are not dependent upon the diameter of the offtake pipe, if that is sufficiently small, and results are then expressed either as a dimensionless water depth vs a dimensionless ratio of the flow rates of the two phases or as a dimensionless flow rate of one phase vs the dimensionless flow rate of the other phase. An approximate theory describes trends in the data and is mostly in good quantitative agreement.

The results are used to examine the work of others on the entrainment of air or steam by water flowing along the bottom of a horizontal pipe into a small bottom offtake and the similar entrainment of water by air or steam flowing into a small top offtake. These systems occur in certain PWR loss of coolant accidents.  相似文献   


15.
Experiments in wet clay soil with cage wheel lug showed that the failure pattern in front of a lug was totally different from that assumed in passive soil pressure theory. Based on the failure pattern, the area of deformation zone and surcharge buildup in front of the lug, it was observed that the existing passive soil pressure theory could not be used to describe the soil movement caused by the action of the cage wheel lug. While working with a tine, four types of soil failure patterns were observed. It was found that these types of soil failures in front of a rigid tine were a strong function of soil moisture content. Passive pressure theory does not accurately predict the forces measured.  相似文献   

16.
Measurements of quasi-static advancing contact angles of refrigerant R134a on copper and aluminum surfaces are reported over a temperature range from 0 °C to 80 °C. The metal surfaces tested were aluminum (alloy 3003) and copper (alloy 101) plates. Measurements were done using a direct optical observation technique where the liquid meniscus at the surface of a vertical plate was captured using a high magnification camera system. The contact angle of solid–liquid interface was deduced by enhancing and manipulating the digital image using solid modeling software by drawing a tangent line to the meniscus at the intersection location of the solid, liquid and vapor. Values of the contact angle were found to vary between 8.3° and 5.6° for aluminum and between 5.1° and 6.5° for copper when the temperature rose from 0 °C to 80 °C. Maximum standard deviation amongst the measured values of contact angles was 1.3°.  相似文献   

17.
This paper visualizes and analyzes an effect of a wheel camber angle for the slope traversability in sandy terrain. An in-wheel camera developed in this work captures the wheel-soil contact phenomenon generated beneath the wheel through a transparent section of the wheel surface. The images taken by the camera are then analyzed using the particle image velocimetry. The soil flows with various wheel camber angles are analyzed with regard to the soil failure observed on the slope surface. The analysis reveals that the slope failure and soil accumulation in front of the wheel significantly affect the wheel forces and distributions of the wheel sinkage in the wheel width direction. Further, the side force of the wheel in traversing a slope decreases as the slip ratio increases because the shear stress in the slope downward direction decreases owing to the slope failure.  相似文献   

18.
Turbulence time scales in mixing box experiments   总被引:1,自引:0,他引:1  
Laboratory experiments are performed to examine eddy time scales in turbulence generated by an oscillating grid in homogeneous fluid using tanks with varying depth and fixed high aspect ratio horizontal cross-section. For high ratios of depth to width, a mean circulation develops in the form of a pair of counter-rotating vortices. In a new technique, pearlescent dye is employed to measure eddy time scales and to determine their power law scaling dependence on the distance from the oscillating grid. Two scaling regimes are observed, one near the source of turbulence and one at intermediate depths. At intermediate depths, the scaling exponent is found to increase if the total fluid depth is larger. We discuss the significance of these results on the use of the law-of-the-wall scaling in the upper oceanic mixed layer.  相似文献   

19.
The pressure-sinkage relation of dry loose sand is one of the main problems considered for a vehicle to drive in desert. It is affected by loading patterns. Based on plate-sinkage tests. the effects of two different loading patterns on the pressure-sinkage relation of dry loose sand are studied. One is that the plate is horizontal with the angle of load relative to the plate normal varying from 0 to 30 degrees. The other is that the load is perpendicular to the plate with the angle of the plate relative to sand surface varying from 0 to 30 degrees. The results indicate that the pressure -sinkage relations of dry loose sand in both the above mentioned cases are different from that in the horizontal plate-vertical load case and that if the sinkage-pressure relation under the horizontal plate-inclined load case is used to determine the normal stress distribution under the tire, a precise prediction of the tractive properties of a wheel can be obtained.  相似文献   

20.
The steering forces at low speed and zero camber angle were measured on undriven, angled wheels using tyres with no tread. The forces were measured in a soil bin using a moist loam soil at different levels of compaction. It was found that the coefficient of side force relative to the wheel was related to slip angle by an exponential relationship. Coefficient of rolling resistance relative to the wheel was a linear function of slip angle in the region zero to 20° but was an irregular function of slip angle at higher angles. The effects of tyre size, load, inflation pressure and soil condition were modelled well using different versions of the tyre mobility number. The most successful version of mobility number was one which incorporated both soil cohesion and internal friction angle. The coefficients of the exponential and linear relationships mentioned above were predicted with varying degrees of success using mobility number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号