首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of the porous plate method and mercury porosimetry intrusion tests, capillary pressure curves of three different sandstones were measured. The testing results have been exploited jointly with three relative permeability models of the pore space capillary type (Burdine’s model type), these models are widely used and in rather distinct fields. To do so, capillary pressure has been correlated to saturation degree using six of the most popular relations encountered in the literature. Model predictions were systematically compared to the experimentally measured relative permeabilities presented in the first part of this work. Comparison indicated that the studied models underestimate the water relative permeability and over-estimate that of the non-wetting phase. Moreover, this modeling proves to be unable to locate the significant points that are the limits of fields of saturation where the variation of the relative permeabilities becomes consequent. We also showed that, if pore structure is modeled as a “bundle of capillary tubes”, model predications are independent of the capillary pressure curve measuring method.  相似文献   

2.
In this work, a two-phase film-flow model in a hygroscopic capillary tube is developed and extended to describe the two-phase capillary viscous transport in a network of parallel capillary tubes in terms of relative permeabilities. This film-flow approach is further considered to predict the longitudinal moisture transport in oak wood during drying. Numerical results obtained from this prediction are compared with data of convective drying experiments performed on samples of this wood. The comparison seems to confirm the physical relevance of a film-flow model to correctly represent the moisture transfer until the hygroscopic regime is reached.  相似文献   

3.
Counter-current flow occurs in many reservoir processes and it is important to understand and model these processes in order to operate them effectively. Both drainage and imbibition processes exist simultaneously during counter-current flow. It has thus proven difficult to model this type of flow using conventional techniques because of the impossibility of assigning a single capillary pressure curve applicable over the entire sample. In the current paper, a new saturation-history-dependent approach has been developed to simulate a counter-current flow experiment done with an X-ray CT scanner. Hysteresis in both capillary pressure and relative permeabilities is considered during simulation. Capillary hysteresis loop and relative permeabilities are extracted through history matching and a family of scanning curves is constructed connecting the two branches of the capillary hysteresis loop. Each gridblock of the sample is assigned a different scanning curve according to the local saturation history. History-dependent modeling of the experiment reproduced two-dimensional saturation distributions over time with good accuracy, which cannot be obtained with traditional simulation using only one capillary pressure curve.  相似文献   

4.
A Steady-State Upscaling Approach for Immiscible Two-Phase Flow   总被引:1,自引:2,他引:1  
The paper presents a model for computing rate-dependent effective capillary pressure and relative permeabilities for two-phase flow, in 2 and 3 space-dimensions. The model is based on solving the equations for immiscible two-phase flow at steady-state, accounting for viscous and capillary forces, at a given external pressure drop. The computational performance of the steady-state model and its accuracy is evaluated through comparison with a commercial simulator ECLIPSE. The properties of the rate-dependent effective relative permeabilities are studied by way of computations using the developed steady-state model. Examples presented show the dependence of the effective relative permeabilities and capillary pressures, which incorporate the effects of fine scale wettability heterogeneity, on the external pressure drop, and thereby on the dimensionless macro-scale capillary number. The effective relative permeabilities converge towards the viscous limit functions as the capillary number tends to infinity. Special cases, when the effective relative permeabilities are rate-invariant, are also studied. The applicability of the steady-state upscaling algorithm in dynamic displacement situations is validated by comparing fine-gridded simulations in heterogeneous reservoirs against their homogenized counterparts. It is concluded that the steady-state upscaling method is able to accurately predict the dynamic behavior of a heterogeneous reservoir, including small scale heterogeneities in both the absolute permeability and the wettability.  相似文献   

5.
The analytical equations for calculating two-phase flow, including local capillary pressures, are developed for the bundle of parallel capillary tubes model. The flow equations that are derived were used to calculate dynamic immiscible displacements of oil by water under the constraint of a constant overall pressure drop across the tube bundle. Expressions for averaged fluid pressure gradients and total flow rates are developed, and relative permeabilities are calculated directly from the two-phase form of Darcy's law. The effects of pressure drop and viscosity ratio on the relative permeabilities are discussed. Capillary pressure as a function of water saturation was delineated for several cases and compared to a steady-state mercury-injection drainage type of capillary pressure profile. The bundle of serial tubes model (a model containing tubes whose diameters change randomly at periodic intervals along the direction of flow), including local Young-Laplace capillary pressures, was analyzed with respect to obtaining relative permeabilities and macroscopic capillary pressures. Relative permeabilities for the bundle of parallel tubes model were seen to be significantly affected by altering the overall pressure drop and the viscosity ratio; relative permeabilities for the bundle of serial tubes were seen to be relatively insensitive to viscosity ratio and pressure, and were consistently X-like in profile. This work also considers the standard Leverett (1941) type of capillary pressure versus saturation profile, where drainage of a wetting phase is completed in a step-wise steady fashion; it was delineated for both tube bundle models. Although the expected increase in capillary pressure at low wetting-phase saturation was produced, comparison of the primary-drainage capillary pressure curves with the pseudo-capillary pressure profiles, that are computed directly using the averaged pressures during the displacements, revealed inconsistencies between the two definitions of capillary pressure.  相似文献   

6.
An analytic relation between the Hugoniot states and other thermodynamic states under high pressures for carbon fiber composites is proposed. Several relations for the nonlinear anisotropic medium and a generalized decomposition of the stress tensor are used to study the double structure, which consists of a nonlinear anisotropic and an isotropically elastic part, of the shock wave in various directions in carbon fiber composites. Numerical computations of the Hugoniot stress levels agree well with experimental data obtained for the chosen carbon fiber epoxy composite.  相似文献   

7.
A parametric two-phase, oil–water relative permeability/capillary pressure model for petroleum engineering and environmental applications is developed for porous media in which the smaller pores are strongly water-wet and the larger pores tend to be intermediate- or oil-wet. A saturation index, which can vary from 0 to 1, is used to distinguish those pores that are strongly water-wet from those that have intermediate- or oil-wet characteristics. The capillary pressure submodel is capable of describing main-drainage and hysteretic saturation-path saturations for positive and negative oil–water capillary pressures. At high oil–water capillary pressures, an asymptote is approached as the water saturation approaches the residual water saturation. At low oil–water capillary pressures (i.e. negative), another asymptote is approached as the oil saturation approaches the residual oil saturation. Hysteresis in capillary pressure relations, including water entrapment, is modeled. Relative permeabilities are predicted using parameters that describe main-drainage capillary pressure relations and accounting for how water and oil are distributed throughout the pore spaces of a porous medium with mixed wettability. The capillary pressure submodel is tested against published experimental data, and an example of how to use the relative permeability/capillary pressure model for a hypothetical saturation-path scenario involving several imbibition and drainage paths is given. Features of the model are also explained. Results suggest that the proposed model is capable of predicting relative permeability/capillary pressure characteristics of porous media mixed wettability.  相似文献   

8.
An assessment is made of the feasibility of using PIV velocity data for the non-intrusive aerodynamic force characterization (lift, drag and pitching moment) of an airfoil. The method relies upon the application of control-volume approaches in combination with the deduction of the pressure from the PIV experimental data, by making use of the momentum equation. First, the consistency of the method is verified by means of synthetic data obtained from CFD. Subsequently, the procedure was applied in an experimental investigation, in which the PIV approach is validated against standard pressure-based methods (surface pressure distribution and wake rake).  相似文献   

9.
In three-phase flow, the macroscopic constitutive relations of capillary pressure and relative permeability as functions of saturation depend in a complex manner on the underlying pore occupancies. These three-phase pore occupancies depend in turn on the interfacial tensions, the pore sizes and the degree of wettability of the pores, as characterised by the cosines of the oil–water contact angles. In this work, a quasi-probabilistic approach is developed to determine three-phase pore occupancies in media where the degree of wettability varies from pore to pore. Given a set of fluid and rock properties, a simple but novel graphical representation is given of the sizes and oil–water contact angles underlying three-phase occupancies for every allowed combination of capillary pressures. The actual phase occupancies are then computed using the contact angle probability density function. Since a completely accessible porous medium is studied, saturations, capillary pressures, and relative permeabilities are uniquely related to the pore occupancies. In empirical models of three-phase relative permeability it is of central importance whether a phase relative permeability depends only on its own saturation and how this relates to the corresponding two-phase relative permeability (if at all). The new graphical representation of pore sizes and wettabilities clearly distinguishes all three-phase pore occupancies with respect to these saturation-dependencies. Different types of saturation-dependencies may occur, which are shown to appear in ternary saturation diagrams of iso-relative permeability curves as well, thus guiding empirical approaches. However, for many saturation combinations three-phase and two-phase relative permeabilities can not be linked. In view of the latter, the present model has been used to demonstrate an approach for three-phase flow modelling on the basis of the underlying pore-scale processes, in which three-phase relative permeabilities are computed only along the actual flow paths. This process-based approach is used to predict an efficient strategy for oil recovery by simultaneous water-alternating-gas (SWAG) injection.  相似文献   

10.
This paper presents a method and describes an experimental device for determining the steam-water relative permeabilites of unconsolidated porous media. The experimental conditions are as close as possible to those of geothermal reservoirs. The relative permeabilities have been obtained at 180 and 150?C. Their variations versus liquid saturation are quite classical. The air-water relative permeabilities have been measured also at room temperature. The values obtained under these three conditions are almost identical. However, the air-water relative permeability differs slightly from that of steam at 180 and 150?C. We think this discrepancy is acceptable in practice, as it is easier to determine the relative permeabilities for an air-water flow at room temperature than for a steam-water flow at high temperature and pressure.  相似文献   

11.
Condensation under high relative humidity, imbibition under zero capillary pressure, and drying in a cracked mesoporous slab is numerically simulated. The porous medium is homogeneous, the crack lattice is periodic and has uniform aperture and transport properties. It is found that the crack lattice density and the crack hydraulic conductivity has minor influence on the global kinetics of condensation and drying, and a strong influence on the imbibition kinetics. The transient effects of the heterogeneity of the medium are examined from three view-points: the study of the spatial distribution of pressure head, the tentative definition of an effective diffusivity, and the comparison between the quasi-static and transient transport properties. The equivalent homogeneous medium approach is found to be relatively satisfactory to describe the global kinetics in the three processes. The transient effects appear in secondary features of the processes.  相似文献   

12.
When simulating two-phase flow in porous media, one has to consider the case where there is a discontinuity in the medium. There relative permeabilities and capillary pressure functions may change and we address the problem of calculating the convective part of the numerical flux at the interface between the two rock types. Several solutions are compared.  相似文献   

13.
The Rapoport-Leas mathematical model of two-phase flow is generalized to include the case of anisotropic porous media. The formula for the capillary pressure, which specifies the relationship between the phase pressures, contains a scalar function of a vector argument. In order to determine the scalar function, the capillary pressure tensor and the tensor inverse to the tensor of characteristic linear dimensions are introduced. The capillary pressure is determined by the contraction of the second-rank tensors with a unit vector collinear to the phase pressure gradients, also assumed to be collinear. It is shown that the saturation function introduced for isotropic porous media (Leverett function) can be generalized to include anisotropic media and is now determined by a fourth-rank tensor. Generalized expressions for the Leverett and relative phase permeability functions are given for orthotropic and transversely isotropic media with account for the hysteresis of the phase permeabilities and capillary pressure.  相似文献   

14.
15.
A method has been developed for investigating the relative permeabilities of porous media for oil and for aqueous solutions of polymers; experimental equipment has been developed for determining the phase permeabilities by a stationary method. Investigations were made of the influence of polyacrylamide additives on the change in the relative permeabilities for the simultaneous flow of water and a nonpolar hydrocarbon liquid. It was established that addition of the polymer can lead to a simultaneous reduction in the relative permeability for the wetting liquid and an increase for the nonwetting liquid. The phase permeabilities were obtained for oil and water moving behind a fringe of polymer substance. It was established that the phase permeability for the water phase is a function of the saturation and the amount of sorbate. A cycle of experimental investigations was made into the influence of the rate of pumping and the concentration of the dissolved polymer on the change in the relative permeabilities.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 163–167, July–August, 1980.  相似文献   

16.
When regions of three-phase flow arise in an oil reservoir, each of the flow parameters, i.e. capillary pressures and relative permeabilities, are generally functions of two phase saturations and depend on the wettability state. The idea of this work is to generate consistent pore-scale based three-phase capillary pressures and relative permeabilities. These are then used as input to a 1-D continuum core- or reservoir-scale simulator. The pore-scale model comprises a bundle of cylindrical capillary tubes, which has a distribution of radii and a prescribed wettability state. Contrary to a full pore-network model, the bundle model allows us to obtain the flow functions for the saturations produced at the continuum-scale iteratively. Hence, the complex dependencies of relative permeability and capillary pressure on saturation are directly taken care of. Simulations of gas injection are performed for different initial water and oil saturations, with and without capillary pressures, to demonstrate how the wettability state, incorporated in the pore-scale based flow functions, affects the continuum-scale displacement patterns and saturation profiles. In general, wettability has a major impact on the displacements, even when capillary pressure is suppressed. Moreover, displacement paths produced at the pore-scale and at the continuum-scale models are similar, but they never completely coincide.  相似文献   

17.
In the limit of zero capillary pressure, solutions to the equations governing three-phase flow, obtained using common empirical relative permeability models, exhibit complex wavespeeds for certain saturation values (elliptic regions) that result in unstable and non-unique solutions. We analyze a simple but physically realizable pore-scale model: a bundle of cylindrical capillary tubes, to investigate whether the presence of these elliptic regions is an artifact of using unphysical relative permeabilities. Without gravity, the model does not yield elliptic regions unless the most non-wetting phase is the most viscous and the most wetting phase is the least viscous. With gravity, the model yields elliptic regions for any combination of viscosities, and these regions occupy a significant fraction of the saturation space. We then present converged, stable numerical solutions for one-dimensional flow, which include capillary pressure. These demonstrate that, even when capillary forces are small relative to viscous forces, they have a significant effect on solutions which cross or enter the elliptic region. We conclude that elliptic regions can occur for a physically realizable model of a porous medium, and that capillary pressure should be included explicitly in three-phase numerical simulators to obtain stable, physically meaningful solutions which reproduce the correct sequence of saturation changes.  相似文献   

18.
Relative Permeability Analysis of Tube Bundle Models   总被引:1,自引:1,他引:0  
The analytical solution for calculating two-phase immiscible flow through a bundle of parallel capillary tubes of uniform diametral probability distribution is developed and employed to calculate the relative permeabilities of both phases. Also, expressions for calculating two-phase flow through bundles of serial tubes (tubes in which the diameter varies along the direction of flow) are obtained and utilized to study relative permeability characteristics using a lognormal tube diameter distribution. The effect of viscosity ratio on conventional relative permeability was investigated and it was found to have a significant effect for both the parallel and serial tube models. General agreement was observed between trends of relative permeability ratios found in this work and those from experimental results of Singhal et al. (1976) using porous media consisting of mixtures of Teflon powder and glass beads. It was concluded that neglecting the difference between the average pressure of the non-wetting phase and the average pressure of the wetting phase (the macro-scale capillary pressure) – a necessary assumption underlying the popular analysis methods of Johnson et al. (1959) and Jones and Roszelle (1978) – was responsible for the disparity in the relative permeability curves for various viscosity ratios. The methods therefore do not account for non-local viscous effects when applied to tube bundle models. It was contended that average pressure differences between two immiscible phases can arise from either capillary interfaces (micro-scale capillary pressures) or due to disparate pressure gradients that are maintained for a flow of two fluids of viscosity ratio that is different from unity.  相似文献   

19.
We present two methods how the permeability in porous microstructures can be experimentally obtained from particle tracking velocimetry of finite-sized colloidal particles suspended in a liquid. The first method employs additional unpatterned reference channels where the liquid flow can be calculated theoretically and a relationship between the velocity of the particles and the liquid is obtained. The second method takes advantage of a time-dependent pressure drop that leads to an exponential decrease in the particle velocity inside a porous structure. From the corresponding decay time, the permeability can be calculated independently of the particle size. Both methods lead to results comparable with permeabilities derived from numerical simulations.  相似文献   

20.
A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is based on the concept of examining the porous space at different levels of magnification. The conservation of the water vapour permeability of dry material is used as scaling criterion to link the different pore scales. A macroscopic permeability is deduced from the permeabilities calculated at the different levels of magnification. Each level of magnification is modelled using an isotropic nonplanar 2D cross-squared network. The multiscale network simulates the enhancement of water vapour permeability due to capillary condensation, the hysteresis phenomenon between wetting and drying, and the steep increase of moisture permeability at the critical moisture saturation level. The calculated network permeabilities are compared with experimental data for calcium silicate and ceramic brick and a good agreement is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号