首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Fluid-saturated sands exhibit irreversible compaction and shear hysteresis under cyclic shear loads in both free draining and undrained conditions. Constitutive relations of differential-type are constructed heuristically from typical qualitative response. An influence of pore pressure on compaction is incorporated, and the generation of pore pressure under cyclic shearing is investigated. Parameter variations in the shear relations allow a variety of hysteresis loop behaviours to be described.  相似文献   

2.
We examine the pore space structure evolution of ordered uniform sphere packs: simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC), undergoing simple diagenetic processes that reduce their pore spaces. Focus is on the occurrence of pore space microstructure changes or transitions, which are followed through their characteristic or critical pore lengths (l c). For almost all the cubic packings undergoing either compaction or cementation there are no singularities in l c. This is a consequence of having a single pore shape controlling flow at all stages of the process. However, this is not so for the BCC packing under cementation, for which l c is non-monotonic exhibiting a kink at ${\phi \approx 0.1452}$ , the porosity at which the pore shape controlling flow switches to a different form and position. These results for uniform compaction/cementation complement our previous works on pore networks under random shrinkage. Kinks in l c as porosity decreases signal pore space microstructure transitions that anticipate sudden changes in the permeability?Cporosity relation as porosity decreases. The consequences are great; clearly l c is not a constant unless the diagenetic process is mild. A l c function of compaction/cementation advancement should be used above a transition and a different l c function below. For the sphere packs here, once the diagenetic process has reduced the pore space substantially, a l c function of compaction/cementation advancement is mandatory if we are to capture all significant flow features.  相似文献   

3.
This paper presents a numerical model for simulating the pore-scale transport and infiltration of dilute suspensions of particles in a granular porous medium under the action of hydrodynamic and gravitational forces. The formulation solves the Stokes’ flow equations for an incompressible fluid using a fixed grid, multigrid finite difference method and an embedded boundary technique for modeling particle–fluid coupling. The analyses simulate a constant flux of the fluid suspension through a cylindrical model pore. Randomly generated particles are collected within the model pore, initially through contact and attachment at the grain surface (pore wall) and later through mounding close to the pore inlet. Simple correlations have been derived from extensive numerical simulations in order to estimate the volume of filtered particles that accumulate in the pore and the differential pressure needed to maintain a constant flux through the pore. The results show that particle collection efficiency is correlated with the Stokes’ settling velocity and indirectly through the attachment probability with the particle–grain surface roughness. The differential pressure is correlated directly with the maximum mound height and indirectly with particle size and settling velocity that affect mound packing density. Simple modification factors are introduced to account for pore length and dip angle. These parameters are used to characterize pore-scale infiltration processes within larger scale network models of particle transport in granular porous media in a companion paper. Articlenote: Currently at GZA GeoEnvironmental Inc., 1 Edgewater Drive, Norwood, MA 02062, U.S.A.  相似文献   

4.
5.
颗粒材料中致密波结构研究   总被引:1,自引:1,他引:0  
采用一维两相流模型与相应颗粒构形应力函数,研究了致密波的形成及其结构.用简化两相流模型系统地讨论致密波对有关因素的依赖关系.分析指出:小于基体材料音速的致密波仅能在非理想颗粒材料中存在,从波前到波后,所有状态物理量光滑过渡.大于基体材料音速的致密波,波头可能存在间断.应力函数与致密粘性确定后,致密波速度决定致密波结构、宽度、终态压实度.采用一维两相流模型模拟了活塞驱动颗粒床形成致密波这一动态过程.用线方法(MOL)对该方程组求数值解.计算表明,经过短暂的非稳态过程,颗粒床中形成一稳态致密波.分析了活塞速度与初始孔隙率对致密波结构的影响,并对简化两相流模型与两相流模型的计算结果进行了对比.  相似文献   

6.
为加固新近吹填的处于流塑状态的粉土地基,首先采用轻型井点降水和动力碾压的方法使地基具有一定的初始承载力。然后,施加较大的强夯动力荷载,从而使地基承载力得到显著提高。这一新的综合加固技术称之为“预排水动力固结法”。通过现场测试,研究了施工过程中诸如井点降水的影响范围、强夯时孔隙水压力的变化范围、深层沉降的变化等问题。同时,对强夯夯击遍数、每点夯击次数、遍与遍之间的间隙时间等有关问题进行讨论。研究表明,预排水动力固结法可显著提高吹填粉土地基的承载力。  相似文献   

7.
The characteristic pore length fixes the scale of permeability of a porous medium. For pore networks undergoing strong random compaction, this length becomes singular at transition porosities, revealing a change in the microstructure of the porespace controlling the transport. Nodal balances and lattice Boltzmann simulations of flow in pore networks under compaction show that the scaling between permeability and porosity changes near the transition porosities. Simulation results are compared with experimental permeability data from transparent two-dimensional micromodels of networks decorated with the same pore size distribution. Permeability?Cporosity data of media undergoing smooth compaction is well described by a single power law. Under strong compaction, however, the scaling between permeability and porosity is possible by traits only, the scaling exponent changes notably at given transition porosities. These behaviors are common to a wealth of permeability?Cporosity data thus far unexplained.  相似文献   

8.
赵铮  李晓杰  陶钢 《爆炸与冲击》2009,29(3):289-294
爆炸压实过程中多孔体的孔隙闭合程度对压实效果起着决定性作用。利用LS-DYNA有限元程序,对无氧铜中的圆形孔隙塌缩过程进行了数值模拟。根据模拟结果分析得出,在6 GPa的冲击压力下,孔隙闭合时不同边界区域会发生爆炸焊接和射流侵彻,这2种结合机理可以使材料结合更牢固,提高材料的致密度和机械强度,实现高质量的爆炸压实。  相似文献   

9.
The classic constitutive equation relating fluid flux to a gradient in potential (pressure head plus gravitational energy) through a porous medium was discovered by Darcy in the mid 1800s. This law states that the flux is proportional to the pressure gradient. However, the passage of the fluid through the porous matrix may cause a local variation of the permeability. For example, the flow may perturb the porous formation by causing particle migration resulting in pore clogging or chemically reacting with the medium to enlarge the pores or diminish the size of the pores. In order to adequately represent these phenomena, we modify the constitutive equations by introducing a memory formalism operating on both the pressure gradient–flux and the pressure–density variations. The memory formalism is then represented with fractional order derivatives. We perform a number of laboratory experiments in uniformly packed columns where a constant pressure is applied on the lower boundary. Both homogeneous and heterogeneous media of different characteristic particle size dimension were employed. The low value assumed by the memory parameters, and in particular by the fractional order, demonstrates that memory is largely influencing the experiments. The data and theory show how mechanical compaction can decrease permeability, and consequently flux.  相似文献   

10.
A pore scale analysis is implemented in this numerical study to investigate the behavior of microscopic inertia and thermal dispersion in a porous medium with a periodic structure. The macroscopic characteristics of the transport phenomena are evaluated with an averaging technique of the controlling variables at a pore scale level in an elementary cell of the porous structure. The Darcy–Forchheimer model describes the fluid motion through the porous medium while the continuity and Navier–Stokes equations are applied within the unit cell. An average energy equation is employed for the thermal part of the porous medium. The macroscopic pressure loss is computed in order to evaluate the dominant microscopic inertial effects. Local fluctuations of velocity and temperature at the pore scale are instrumental in the quantification of the thermal dispersion through the total effective thermal diffusivity. The numerical results demonstrate that microscopic inertia contributes significantly to the magnitude of the macroscopic pressure loss, in some instances with as much as 70%. Depending on the nature of the porous medium, the thermal dispersion may have a marked bearing on the heat transfer, particularly in the streamwise direction for a highly conducting fluid and certain values of the Peclet number.  相似文献   

11.
High axle loads, duration of strain as well as strain rate due to applied stresses, and field moisture condition have been found to contribute to compaction in the field. Numerous previous investigations on agricultural soil compaction were carried out with relatively dry soil. The aim of this study was to investigate the interrelationships between compaction, applied load, vehicle speed and a certain practical range of soil moisture content through a soil bin investigation of the compaction which results from the passage of a towed and a driven wheel. Soil pressure and the corresponding bulk density were analysed using a model proposed by Bailey et al. (J. agric Engng Res. 33, 257–262 (1986)) and ANOVA techniques. The results showed that compaction was higher at the higher moisture content level for both towed and driven conditions of the wheel, and that it was applied load that had the greatest contributory effect. Also, compaction was higher in the case of the driven wheel as compared to the towed wheel due to the phenomenon of slip sinkage. Bailey's model, it appears, can be utilized in the field for a practical estimation of compaction resulting from the passage of a towed wheel.  相似文献   

12.
A model for pore pressure-dependent cleat permeability is presented for gas-desorbing, linear elastic coalbeds under uniaxial strain conditions experienced in producing reservoirs. In the model, changes in the cleat permeability of coalbeds, which are idealised to have a bundled matchstick geometry, is controlled by the prevailing effective horizontal stresses normal to the cleats. Variations in the effective horizontal stresses under uniaxial strain conditions are expressed as a function of pore pressure reduction during drawdown, which includes a cleat compression term and a matrix shrinkage term that have competing effects on cleat permeability. A comprehensive analysis has revealed that the shape of the stress – pore pressure curve is predominantly determined by the magnitude of recovery pressure and rebound pressure relative to the initial reservoir pressure. A total of five possible scenarios have been identified with regard to response of the horizontal stress function to reservoir drawdown. When applied to four coalbed wells at two separate sites in the fairway of the San Juan basin, the model predictions at one site, where the three wells have shown increased absolute permeability during gas production, are in excellent agreement with the published pore pressure dependent permeability changes that were obtained independently from history matching the field production data. At a separate site the model correctly predicts, at least qualitatively, a strong permeability rebound at lower drawdown pressures that has been inferred through history matching the production data. An analysis of the effects of initial reservoir pressure on the response of effective horizontal stress to drawdown was carried out, with reference to the range of pressure likely to be encountered in the San Juan basin. The implications of this in terms of pore pressure dependent permeability are discussed.  相似文献   

13.
A new theoretical model of joint filtration flow of immiscible incompressible fluids is presented. This model takes into account relaxation processes due to the exchange of the fluids between pores of different sizes, and these relaxation processes are driven by capillary forces. The fluids occupy connected regions in the four-dimensional space formed by three coordinates and the pore length scale. When fluid exchange between pores of given sizes is effected by way of successive flow through pores of all intermediate sizes, the fluid pressure within each region is governed by a hyperbolic equation, the role of time being played by the pore linear scale. Pressure jumps across hypersurfaces separating these regions are equal to corresponding values of capillary pressure. A supplementary condition at any such hypersurface requires the speed of its displacement in the four-dimensional space to coincide with the normal velocity components of both the adjoining fluids. As a result, a new formulation of multiphase filtration flow problems is gained with allowance made for capillary relaxation in the porous space.  相似文献   

14.
基于三剪统一强度准则,利用等量代换法和坐标平移法分别推导出正常固结饱和黏性土的三剪破坏应力比,并将其与修正剑桥模型相结合,得到三剪统一屈服面方程。为反映饱和黏性土的变形非线性及大变形特性,基于有限变形理论,建立了正常固结饱和黏性土的三剪统一有限变形等量代换法和坐标平移法2种弹塑性本构模型。为验证模型的适用性,取江西红黏土制备三种不同压实度的试样,在不同围压下进行常规三轴固结不排水和固结排水压缩试验。将试验数据与本文所提2种有限变形模型及相应的2种小变形模型计算结果进行了对比分析,结果表明,随着变形的发展,有限变形模型相对于小变形模型更接近试验结果,能较好地反映黏性土因高孔隙率(低初始压实度、小围压及压缩变形前期)而产生的大变形特性,虽然小变形模型的计算偏差会随着土样初始压实度和所施加围压的增大而减小,但有限变形模型对不同压实度和围压的计算偏差均相对较小,其中,等量代换法有限变形模型在初始压实度较大或者围压较高时所得计算偏差相对最小。对所提本构模型所做真三轴分析表明,中间主应力影响系数b和初始压实度对土体的强度和变形特性具有一定的影响。主应力差、孔隙水压力和体应变与b值呈正相关性,主应力差与初始压实度呈正相关性,孔隙水压力和体应变与初始压实度呈负相关性。  相似文献   

15.
In this study, a novel approach to incorporate the pore water pressure in the discrete element method (DEM) to comprehensively model saturated granular media was developed. A numerical model was constructed based on the DEM by implanting additional routines in the basic DEM code; pore water pressure calculations were used with a two-dimensional (2D) model to simulate the undrained behavior of saturated granular media. This model coupled the interaction of solid particles and the pore fluid in saturated granular media. Finally, several 2D undrained shear tests were simulated. The test results showed that the model could predict the response of the saturated granular soil to shear loading. The effect of initial compaction was investigated. Biaxial tests on dense and loose specimens were conducted, and the effect of the initial density on the change in shear strength and the volume change of the system was investigated. The overall behavior of loose and dense specimens was phenomenologically similar to the real granular material. Constant volume tests were simulated, and the results were compared to those from the coupled model. Induced anisotropy was micromechanically investigated by studying the contact force orientation. The change in anisotropy depended on the modeling scheme. However, the overall responses of the media obtained using the coupled and constant volume methods were similar.  相似文献   

16.
In this study, a novel approach to incorporate the pore water pressure in the discrete element method (DEM) to comprehensively model saturated granular media was developed. A numerical model was constructed based on the DEM by implanting additional routines in the basic DEM code; pore water pressure calculations were used with a two-dimensional (2D) model to simulate the undrained behavior of satu- rated granular media. This model coupled the interaction of solid particles and the pore fluid in saturated granular media. Finally, several 2D undrained shear tests were simulated. The test results showed that the model could predict the response of the saturated granular soil to shear loading. The effect of initial compaction was investigated. Biaxial tests on dense and loose specimens were conducted, and the effect of the initial density on the change in shear strength and the volume change of the system was inves- tigated. The overall behavior of loose and dense specimens was phenomenologically similar to the real granular material. Constant volume tests were simulated, and the results were compared to those from the coupled model. Induced anisotropy was micromechanically investigated by studying the contact force orientation. The change in anisotropy depended on the modeling scheme. However, the overall responses of the media obtained usinz the couoled and constant volume methods were similar.  相似文献   

17.
This paper presents an analytical solution for the response of a poroelastic medium around a laterally loaded rigid cylinder using Biot’s consolidation theory. A plane-strain section of the cylinder-porous medium system is considered and the problem is formulated in polar coordinates. Expressions for the pore fluid pressure, stresses and displacements in the Laplace domain are derived analytically. The inverse of the Laplace transform is evaluated numerically using an efficient scheme. Curves showing decay of the pore fluid pressure with time, the corresponding change in mean effective stress and the variation of displacement, are plotted in non-dimensional form.  相似文献   

18.
Frequency domain fundamental solutions for a poroelastic half-space   总被引:1,自引:0,他引:1  
In frequency domain, the fundamental solutions for a poroelastic half-space are re-derived in the context of Biot's theory. Based on Biot's theory, the governing field equations for the dynamic poroelasicity are established in terms of solid displacement and pore pressure. A method of potentials in cylindrical coordinate system is proposed to decouple the homogeneous Biot's wave equations into four scalar Helmholtz equations, and the general solutions to these scalar wave equations are obtained. After that, spectral Green's functions for a poroelastic full-space are found through a decomposition of solid displacement, pore pressure, and body force fields. Mirror-image technique is then applied to construct the half-space fundamental solutions.Finally, transient responses of the half-space to buried point forces are examined.  相似文献   

19.
A numerical model is developed to simulate saturated granular soil, based on the discrete element method. Soil particles are represented by Lagrangian discrete elements, and pore fluid, by appropriate discrete elements which represent alternately Lagrangian mass of water and Eulerian volume of space. Macro-scale behavior of the model is verified by simulating undrained biaxial compression tests. Micro-scale behavior is compared to previous literature through pore pressure pattern visualization during shear tests. It is demonstrated that dynamic pore pressure patterns are generated by superposed stress waves. These pore-pressure patterns travel much faster than average drainage rate of the pore fluid and may initiate soil fabric change, ultimately leading to liquefaction in loose sands. Thus, this work demonstrates a tool to roughly link dynamic stress wave patterns to initiation of liquefaction phenomena.  相似文献   

20.
This paper reports experimental results that demonstrate petrophysical and capillary characteristics of compacted salt. The measured data include porosity, gas permeability, pore size distribution, specific surface area, and gas-brine breakthrough and capillary pressure. Salt samples employed in the experiments were prepared by compacting sodium chloride granulates at high stresses for several hours. They represent an intermediate consolidation stage of crushed salt under in-situ conditions. The porosity and permeability of compacted salt showed similar trends to those expected in backfilled regions of waste repositories excavated in salt rock. The correlation between the measured porosity and permeability seems to be independent of the compaction parameters for the range examined in this study. The correlation also shows a different behaviour from that of rock salt. The data of all petrophysical properties show that the pore structure of compacted salt can be better characterized by fracture permeability models rather than capillary bundle ones. Simple creep tests, conducted on the fully-brine-saturated compacted salt samples, yielded similar strain rates to those obtained by a steady-state mechanical model developed from the tests on fully brine-saturated granular salt. A modified procedure is proposed for the evaluation of restored-state capillary pressure data influenced by the material creep. The characteristic parameters for the capillary behaviour of compacted salt are determined by matching the Brooks-Corey and van Genuchten models with the measured data. The Leverett functions determined with different methods agree well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号