首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
辐射换热下瞬态热-结构分析的一种空间薄壁杆单元   总被引:1,自引:0,他引:1  
发展了一种用于辐射换热条件下瞬态热-结构分析的空间薄壁杆单元,其截面形式可以是任意形状的闭口截面和单支开口截面。该单元温度场分解为平均温度和多谐摄动温度,沿杆轴方向采用两结点线性插值,沿杆截面周向用三角函数展开,每结点含多个解耦的自由度,其中结点平均温度方程同传统一维温度有限元方程为非线性,各谐摄动温度方程为线性,然后利用Wilson-θ法求解结构的瞬态温度场。本文选择了两节点Ber-noulli直梁单元得到准静态热弹性有限元方程并求解,针对非对称开口截面考虑了翘曲变形及弯扭耦合的影响。温度场引起的等效热载荷不仅包括常规的热轴力,还包括热弯矩以及热双力矩。本文针对不同截面形式的梁单元给出了瞬态温度场以及热变形的验证算例,并通过与商业程序中二维壳元计算结果的比较说明了本文所提出方法的正确性和高效性。  相似文献   

2.
发展了一种用于辐射换热条件下瞬态热一结构分析的空间薄壁杆单元,其截面形式可以是任意形状的闭口截面和单支开口截面。该单元温度场分解为平均温度和多谐摄动温度,沿杆轴方向采用两结点线性插值,沿杆截面周向用三角函数展开,每结点含多个解耦的自由度,其中结点平均温度方程同传统一维温度有限元方程为非线性,各谐摄动温度方程为线性,然后利用Wilson-θ法求解结构的瞬态温度场。本文选择了两节点Bernoulli直梁单元得到准静态热弹性有限元方程并求解,针对非对称开口截面考虑了翘曲变形及弯扭耦合的影响。温度场引起的等效热载荷不仅包括常规的热轴力,还包括热弯矩以及热双力矩。本文针对不同截面形式的粱单元给出了瞬态温度场以及热变形的验证算例,并通过与商业程序中二维壳元计算结果的比较说明了本文所提出方法的正确性和高效性。  相似文献   

3.
在弹性接触问题有限元混合法的基础上,把材料非线性和表面非线性两种迭代过程耦合,在瞬态温度场分析中将伽辽金法和向后差分法结合,并用混合法进行热接触迭代,把瞬态温度场分析和弹塑性接触分析耦合。提出了一种瞬态耦合热弹塑性接触有限元分析方法,并已成功地用于核容器的密封分析。  相似文献   

4.
郭小明  张辉 《力学季刊》2000,21(2):214-218
在腔体内部有高温流体,其外壳等固体材料的物性温度而为化的瞬态非线性问题中,其边界条件的确定十分困难。本文采用流一固“混合流”模式进行温度场的计算,由于方程计及了瞬态、复杂形状、浮动外边界条件等因系,采用变步长的控制容积法及时域有限元进行计算。对某个高温燃气配气阀的温度场及热变形进行了数值计算,得到与实测相符的结果。  相似文献   

5.
空间薄壁管结构瞬态温度场、热变形有限元分析   总被引:3,自引:0,他引:3  
对于辐射换热的薄壁杆件航天结构,为分析其在太空中不同时刻的姿态下的温度场和热变形,构造了一种相对自由度矩形管单元。其基本思想是从2维非线性瞬态热传导方程出发,假设沿矩形管横截面上每边的温度为线性分布,用4个角点的平均温度和温差来表示矩形管横截面上的温度分布,构造了一种1维2结点温度杆单元,该单元每个结点包含平均温度,上下面温差,左右面温差3个自由度;在计算热变形时,此三个广义温度参数分别对应热轴力和2个热弯矩载荷。经与三维有限元计算结果的比较,证明用该单元计算的矩形管温度场和位移场是可靠的。利用这种新型的薄壁矩形管单元和本文作者在其他文章中提出的薄壁圆管单元,可以对非线性换热条件下的复杂空间结构进行比较准确的温度场和热变形有限元分析,最后本文计算了考虑遮挡的太阳能帆板的瞬态温度场和热变形以说明其应用价值。  相似文献   

6.
薛明德  向志海 《力学学报》2022,54(9):2361-2376
近年来, 各种大型空间结构逐渐在我国航天工程中得到应用, 相应的热诱发振动问题也日益受到重视. 在此背景下, 有必要进一步梳理热诱发振动的机理和分析设计中的关键问题. 本文将结合作者的研究工作对此问题进行全面介绍, 并主要强调在分析复杂工程结构的热诱发振动问题时需要注意的特殊问题. 本文首先介绍了可以高效地分析空间薄壁杆件结构(包含开口和闭口薄壁杆件)在辐射换热条件下的瞬态温度场的Fourier有限元方法; 随后介绍了热诱发振动的线性和非线性分析方法, 强调了热?动力学耦合效应. 为了对复杂空间结构产生热诱发振动的必要条件给出解析表达式, 本文将瞬态温度场与振动位移场统一在模态空间中进行分析, 从而得到评价热诱发振动剧烈程度的一般性条件. 在此基础上, 本文进一步讨论了热诱发振动的运动稳定性问题, 以悬臂杆件的热颤振准则为例揭示了热诱发振动发散的物理机理, 并给出了评定复杂工程结构热颤振的分析方法. 论文最后概要地指出了在热诱发振动的地面试验和抑制方法中需要注意的问题, 并对将来的研究工作进行了展望.   相似文献   

7.
热-应力耦合结构灵敏度分析方法   总被引:7,自引:0,他引:7  
研究稳态/瞬态热传导灵敏度分析、以及热与机械荷载同时作用的热结构应力灵敏度分析问题。考虑了温度场随设计变量的变化及其对应力的影响,提出温度场与结构热应力耦合问题的灵敏度计算方法。特别指出了热-应力耦合灵敏度分析中温度场导数的影响, 说明了在热-应力耦合结构灵敏度分析中必须考虑耦合灵敏度。在应用软件系统JIFEX中实现了所提出的方法,数值算例验证了灵敏度算法的精度。  相似文献   

8.
根据传热学原理,利用有限元方法对沥青混合料摊铺后的路面结构瞬态温度场进行数值模拟.在瞬态温度场分析过程中,不仅考虑了热沥青混合料面层对下承层结构的热传导作用,而且也考虑了面层表面与外界环境的热交换,包括:太阳辐射、空气对流换热和路表辐射换热等.将各不同时刻的路面结构温度场作为荷载施加到结构上,计算出半刚性基层结构的瞬态温度应力场.计算结果表明:热沥青混合料摊铺引起的基层最大温度应力明显小于基层的极限强度,不会造成基层的破坏.  相似文献   

9.
刚度和强度是薄板结构的两个主要性能。在瞬态传热过程中,考虑热-力耦合,随时间和空间变化的非均匀温度场在结构中会引起热变形和热应力,温度场随时间变化的规律和空间分布依赖于板的厚度变化,进而影响板的刚度和强度。因此,考虑瞬态传热的薄板优化问题具有更强的非线性,更加难以求解。本文给出一种包络-准则方法处理这类结构优化问题。首先,针对外力荷载,进行一个结构柔顺性的优化设计;以这一设计为基础,通过瞬态热-力耦合分析及优化准则,计算多个时刻的优化设计变量并取其包络,对上述优化结果进行迭代修正,以消除瞬态温度场作用下较高的局部应力。优化算例表明,该方法对于考虑瞬态传热薄板优化问题有效。  相似文献   

10.
采用有限单元-有限差分法研究了热流密度/对流换热边界条件下双向梯度板的瞬态热传导问题。采用细观力学方法结合混合律准则描述了材料的热物理属性,通过推导一种8节点高阶双向梯度单元建立了结构的连续梯度有限元模型。计算给出了在考虑组份属性的温度效应下,温度场的时间响应历程以及不同时刻温度场的空间分布形式,并与材料属性温度无关时的计算结果进行了比较,最后讨论了相关参数对瞬态温度场的影响规律。结果表明:温度较低时,组份属性的温度效应对瞬态温度场影响很小;在 y 方向热流密度载荷的作用下,温度场沿 x、y 方向均存在明显的梯度;x 方向组份体积分布系数的增大,延长了温度场达到稳态需要的时间,绝对温度梯度沿 x、y 方向均增大,稳态温度场升高;增大 y 方向组份体积分布系数的值,情况相反。  相似文献   

11.
热机载荷共同作用下双材料、复合材料中的裂纹扩展往往发生在界面处,并且工程中实际遇到的裂纹大多数是三维裂纹,传统的求解热冲击及机械载荷共同作用下界面裂纹应力强度因子的数值方法如有限元、边界元法计算量大,计算效率低。由于通用权函数仅仅与裂纹体的几何形状有关,与载荷、时间无关,求解应力强度因子时避免了反复的应力分析,计算效率大大提高, 通用权函数法非常适合计算复杂冲击载荷下应力强度因子分布的过渡过程。根据Betti互易原理,本文推导出了三维界面裂纹问题通用权函数法的普遍表达式,并给出了热机载荷共同作用下三维界面I型、Ⅱ型和Ⅲ型裂纹问题通用权函数法的有限元格式. 通过实例计算比较,表明此方法得到的结果可以达到满意的工程应用精度。  相似文献   

12.
建立了含高温度梯度及接触热阻的非线性热力耦合问题的谱元法格式, 考虑了温度相关的热导率、弹性模量、泊松比和热膨胀系数, 以及界面应力相关的接触热阻的影响. 谱元法的插值函数基于非等距分布的Lobatto结点集或第二类Chebyshev结点集, 兼具谱方法的高精度和有限元法的灵活性. 数值算例表明, 建立的谱元法计算格式可以高效高精度地求解域内高温度梯度以及含接触热阻的非线性热力耦合问题, 不仅收敛速度快于传统有限元法, 而且用较少的自由度和较短的计算时间即可得到比传统有限元法更高精度的计算结果, 在工程实际热力耦合问题中具有广阔的应用前景.   相似文献   

13.
An idea is presented to solve the parabolic differential equation by the hyperbolic differential equation. We can simulate and compute the transient temperature field problems by a structural analysis program. Using only a single structural analysis program, the users can compute both temperature and thermal stress distributions on the same finite element mesh. The method thus extends the application of the structural analysis programs which have been implemented widely. As an example, the transient temperature field problem of a square plate is computed. The result is consistent with the theoretical result. A similar method for simulating some viscoelasticity problems of Kelvin model is also presented.  相似文献   

14.
《力学快报》2020,10(4):286-297
The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark's numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian's. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system's reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser's thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations; however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations.  相似文献   

15.
In this paper, we analyze the nonlinear dynamic response of an orthotropic laminate in a simply supported boundary condition subject to thermal and mechanical loading. The equation of motion for the laminate’s deflection is obtained in a decoupled Duffing equation by means of a Galerkin-type method without Berger’s approximations. The Duffing equation incorporates an arbitrary thermal field, with both the in-plane and transverse temperature variations in a steady-state and a transient state. The formulation indicates that the transverse temperature variation produces an additional pressure load, while the in-plane temperature variation affects the system frequency. The equation allows for characterization of the laminate behaviors in nonlinear thermal buckling, thermal vibration and thermal mechanical response.  相似文献   

16.
Numerical simulation of thermal field was studied in laser processing. The 3-D finite element model of transient thermal calculation is given by thermal conductive equation. The effects of phase transformation latent are considered. Numerical example is given to verify the model. Finally the real example of transient thermal field is given.  相似文献   

17.
The thermal protection performance of superalloy honeycomb structure in high-temperature environments are important for thermal protection design of high-speed aircrafts. By using a self-developed transient aerodynamic thermal simulation system, the thermal protection performance of superalloy honeycomb panel was tested in this paper at different transient heating rates ranging from 5°C/s to 30°C/s, with the maximum instantaneous temperature reaching 950°C. Furthermore, the thermal protection performance of superalloy honeycomb structure under simulated thermal environments was computed for different high heating rates by using 3D finite element method, and a comparison between calculational and experimental results was carried out. The results of this research provide an important reference for the design of thermal protection systems comprising superalloy honeycomb panel.  相似文献   

18.
In this study, a unified nonlinear dynamic buckling analysis for Euler–Bernoulli beam–columns subjected to constant loading rates is proposed with the incorporation of mercurial damping effects under thermal environment. Two generalized methods are developed which are competent to incorporate various beam geometries, material properties, boundary conditions, compression rates, and especially, the damping and thermal effects. The Galerkin–Force method is developed by implementing Galerkin method into force equilibrium equations. Then for solving differential equations, different buckled shape functions were introduced into force equilibrium equations in nonlinear dynamic buckling analysis. On the other hand, regarding the developed energy method, the governing partial differential equation for dynamic buckling of beams is also derived by meticulously implementing Hamilton’s principles into Lagrange’s equations. Consequently, the dynamic buckling analysis with damping effects under thermal environment can be adequately formulated as ordinary differential equations. The validity and accuracy of the results obtained by the two proposed methods are rigorously verified by the finite element method. Furthermore, comprehensive investigations on the structural dynamic buckling behavior in the presence of damping effects under thermal environment are conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号