首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
Gexia Wang 《Nonlinear dynamics》2011,63(1-2):277-283
This paper offers a new control strategy for discrete-time chaos synchronization where the drive system and the response system are coupled via a limited capacity communication channel (LCCC for short). One simple condition is presented to ensure synchronization between the two chaotic systems coupled by a LCCC. Based on this condition, an explicit coder–decoder pair for the coding algorithm is designed and the synchronization error between the two chaotic systems decays to zero exponentially based on this coding algorithm. Finally, the proposed control strategy is applied to the well-known H\′{e}non system, and numerical simulations illustrate the validity of the obtained result.  相似文献   

2.
This paper is concerned with the robust adaptive synchronization problem for a class of chaotic systems with actuator failures and unknown nonlinear uncertainty. Combining adaptive method and linear matrix inequality (LMI) technique, a novel type of robust adaptive reliable synchronization controller is proposed, which can eliminate the effect of actuator fault and nonlinear uncertainty on systems. After solving a set of LMIs, synchronization error between the master chaotic and slave chaotic systems can converge asymptotically to zero. Finally, illustrate examples about chaotic Chua’s circuit system and Lorenz systems are provided to demonstrate the effectiveness and applicability of the proposed design method.  相似文献   

3.
We study the synchronization of general chaotic systems which satisfy the Lipschitz condition only, with uncertain variable parameters by linear coupling and pragmatical adaptive tracking. The uncertain parameters of a system vary with time due to aging, environment, and disturbances. A?sufficient condition is given for the asymptotical stability of common zero solution of error dynamics and parameter update dynamics by the Ge?CYu?CChen pragmatical asymptotical stability theorem based on equal probability assumption. Numerical results are studied for a Lorenz system and a quantum cellular neural network oscillator to show the effectiveness of the proposed synchronization strategy.  相似文献   

4.
In this paper, we propose a scheme of the secure communication systems, in the frame of the chaotic synchronization of two semiconductor lasers with optical feedback in mutually coupled configuration within the new modified rate equation of lasers by using the numerical simulations. We explore the robustness of this synchronization scheme with parameter mismatches. A high sensitivity of the synchronization of the lasers via the new control parameter mismatch is discussed in the temporal and frequency domains. Moreover, a possible complete synchronization with negative time lag is discussed. As a result, this leads the receiver to be in the future state of the transmitter. To sustain this proposed scheme, we present the encrypted transmission of binary messages at a bit rate of 250?Mbits/s, and we show that the digital messages at the output receiver laser are perfectly recovered using a finite impulse response filter. The error bits, the error rates as well as the effects of parameter mismatches on the recovered messages are evaluated.  相似文献   

5.
This paper studies the practical adaptive synchronization of a class of uncertain chaotic systems in the drive-response framework. An adaptive response system is designed to practically synchronize a given drive chaotic system with uncertainties. An improved adaptation law on the upper bound of uncertainties is proposed to guarantee the boundedness of both the synchronization error and the estimated feedback coupling gains. The efficiency and effectiveness of the proposed approach is illustrated by computer simulation.  相似文献   

6.
This paper focuses on the exponential synchronization problem of complex dynamical networks (CDNs) with time-varying inner coupling via distributed event-triggered transmission strategy. Information update is driven by properly defined event, which depends on the measurement error. Each node is described as a second-order nonlinear dynamic system and only exchanges information with its neighboring nodes over a directed network. Suppose that the network communication topology contains a directed spanning tree. A sufficient condition for achieving exponential synchronization of second-order nonlinear systems in CDNs with time-varying inner coupling is derived. Detailed theoretical analysis on exponential synchronization is performed by the virtues of algebraic graph theory, distributed event-triggered transmission strategy, matrix inequality and the special Lyapunov stability analysis method. Moreover, the Zeno behavior is excluded as well by the strictly positive sampling intervals based on the upper right-hand Dini derivative. It is noted that the amount of communication among network nodes and network congestion have been significantly reduced so as to avoid the waste of network resources. Finally, a simulation example is given to show the effectiveness of the proposed exponential synchronization criteria.  相似文献   

7.
This paper investigates the drive-response synchronization in shape for a class of two-dimensional continuous systems of chaos. The shape of the chaotic attractor of the drive chaotic system is considered in this paper. Using the signed curvatures of plane curves to describe the shapes of trajectories for drive and response systems, the continuous controller for shape synchronization is synthesized based on the fundamental theorem on plane curves in classical differential geometry. The continuous controller synthesized can guarantee that the response system is synchronized with the drive chaotic system in shape. The shape synchronization is obtained in spite of different dimensions in drive and response systems. Finally, the Duffing oscillator is utilized as an illustrative example. Simulation results show that the method proposed in this paper is effective for the application of secure communication.  相似文献   

8.
In this paper, a new passivity-based synchronization method for a general class of chaotic systems is proposed. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the passivity-based controller is presented to make the synchronization error system not only passive but also asymptotically stable. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies for the Genesio-Tesi chaotic system and the Qi chaotic system are presented to demonstrate the effectiveness of the proposed scheme.  相似文献   

9.
This paper is concerned with the problem of asymptotic synchronization of a class of chaotic systems in the presence of network deterioration and time-varying delays. Based on adaptive adjustment technique and circuitry principle, a new version of the active coupling as well as its circuit realization is proposed. Then, an approach that is based on application of Lyapunov stability theory for the synchronization error system is introduced to prove the asymptotic synchronization result of the overall chaotic system. Moreover, a condition which denotes that at least one coupling will not be deteriorated for synchronization of the network is provided in the paper. It is shown that, without control inputs, the result can also be established for the deteriorated coupling networks and any time-varying bounded delay under the topological structure satisfying the condition. Finally, the proposed active couplings are physically implemented by circuits and tested by simulation on a Chua??s circuit network.  相似文献   

10.
Synchronization of master–slave chaotic neural networks are well studied through asymptotic and exponential stability of error dynamics. Besides qualitative properties of error dynamics, there is a need to quantify the error in real-time experiments especially in secure communication system. In this article, we focused on quantitative analysis of error dynamics by finding the exact analytical error bound for the synchronization of delayed neural networks. Using the Halanay inequality, the error bound is going to be obtained in terms of exponential of given system parameters and delay. The time-varying coupling delay has been considered in the neural networks which does not require any restrictive condition on the derivative of the delay. The proposed method can also be applied to find error bound for state estimation problem. The analytical synchronization bound has been corroborated by two examples.  相似文献   

11.
In this paper, a robust synchronization control scheme is proposed for chaotic systems in the presence of system uncertainties and unknown external disturbances. For the synchronization error system, the compound disturbance which is estimated using the disturbance observer cannot be directly measured. If the gain matrix is properly chosen, the disturbance observer can approximate the unknown compound disturbance well. And then, the constrained robust synchronization control scheme is presented for uncertain chaotic systems based on the output of disturbance observer. In the design of a robust synchronization control scheme, the effect of unknown control input constraint has been explicitly considered to guarantee the synchronization performance. Numerical simulation results are presented to illustrate the effectiveness of the proposed constrained synchronization control scheme for uncertain chaotic systems.  相似文献   

12.
Under the framework of drive-response systems, a new method of complete dislocated general hybrid projective synchronization (CDGHPS) is proposed. In this design, every state variable of drive system does not equal the corresponding state variable of response system, but equal other ones of response system while evolving in time. Especially, complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization can be considered all as the special cases of the proposed method. In addition, this method is applied to secure communication through chaotic masking, the unpredictability of the scaling factor in projective synchronization can additionally enhance the security of communication. In consideration of random white noise, we study the random white noise perturbing for the transmission of an information signal. Finally, eliminate noise using wavelet transform. Numerical simulations are given to show the effectiveness of these methods.  相似文献   

13.
Kuz’menko  A. A. 《Nonlinear dynamics》2022,109(3):1763-1775

Synchronization of chaotic systems is considered to be a common engineering problem. However, the proposed laws of synchronization control do not always provide robustness toward the parametric perturbations. The purpose of this article is to show the use of synergy-cybernetic approach for the construction of robust law for Arneodo chaotic systems synchronization. As the main method of design of robust control, the method of design of control with forced sliding mode of the synergetic control theory is considered. To illustrate the effectiveness of the proposed law, in this article it is compared with the classical sliding mode control and adaptive backstepping. The distinctive features of suggested robust control law are the more good compensation of parametric perturbations (better performance indexes—the root-mean-square error (RMSE), average absolute value (AVG) of error) without designing perturbation observers, the ability to exclude the chattering effect, less energy consuming and a simpler analysis of the stability of a closed-loop system. The study of the proposed control law and the change of its parameters and the place of parametric perturbation’s application is carried out. It is possible to significantly reduce the synchronization error and RMSE, as well as AVG of error by reducing some parameters, but that leads to an increase in control signal amplitude. The place of application of parametric disturbances (slave or master system) has no effect on the RMSE and AVG of error. Offered approach will allow a new consideration for the design of robust control laws for chaotic systems, taking into account the ideas of directed self-organization and robust control. It can be used for synchronization other chaotic systems.

  相似文献   

14.
This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization error system. Based on the Lyapunov stability theory, the obtained adaptive laws of fuzzy algorithm not only guarantee the stability of the closed loop error system, but also attenuate the influence of matching error and external disturbance on synchronization error to an arbitrarily desired level. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.  相似文献   

15.
16.
The complex nonlinear systems appear in many important fields of physics and engineering, which are very useful for cryptography and secure communication. This paper investigates adaptive generalized function projective synchronization (AGFPS) between two different dimensional chaotic complex systems with fully or partially unknown parameters via both reduced order and increased order. Based on the Lyapunov stability theorem and adaptive control technique, a general adaptive controller with corresponding parameter update rule is constructed to achieve AGFPS between two nonidentical chaotic complex systems with distinct orders, and identify the unknown parameters simultaneously. This scheme is then applied to obtain AGFPS between the hyperchaotic complex Lü system and the chaotic complex Lorenz system with fully unknown parameters, and between the uncertain chaotic complex Chen system and the uncertain hyperchaotic complex Lorenz system, respectively. Corresponding simulations results are performed to show the feasibility and effectiveness of the proposed synchronization method.  相似文献   

17.
This paper addresses a unified mathematical expression describing a class of chaotic systems, for which the problem of synchronization and anti-synchronization between different chaotic systems with fully uncertain parameters and different structure are studied. Based on the Lyapunov stability theory, a novel, simple, and systemic adaptive synchronization controller is designated, the analytic expression of the controller and the adaptive laws of parameters are developed. Moreover, the proposed scheme can be extended to anti-synchronize a class of chaotic systems. Two chaotic systems with different structure and fully uncertain parameters are employed as the examples to show the effectiveness of the proposed adaptive synchronization and anti-synchronization schemes. Additionally, the robustness and noise immunity of the adaptive synchronization scheme is investigated by measuring the mean squared error of the systems.  相似文献   

18.
In this paper, the effects of time delay on chaotic master–slave synchronization scheme are considered. Using delayed feedback control scheme, a delay-dependent stability criterion is derived for the synchronization of chaotic systems that are represented by Lur’e system with sector-restricted nonlinearities. The derived criterion is a sufficient condition for absolute stability of error dynamics between the master and the slave system. Using a convex representation of the nonlinearity, the stability condition based on the Lyapunov–Krasovskii functional is obtained via LMI formulation. The proposed delay-dependent synchronization criterion is less conservative than the existing ones. The effectiveness of our work is verified through numerical examples.  相似文献   

19.
An adaptive synchronization control method is proposed for the chaotic brushless DC motors based on the LaSalle invariance principle. We show explicitly with numerical proofs that the synchronization error system between the driving and response systems can be asymptotically stable using only a single variable feedback. The present controller is simple in comparison with previous methods. Computer simulation results show that the proposed method is effective.  相似文献   

20.
Due to resource constraints in wireless sensor networks and the presence of unwanted conditions in communication systems and transmission channels, the suggestion of a robust method which provides battery lifetime increment and relative security is of vital importance. This paper considers the secure communication in wireless sensor networks based on new robust adaptive finite time chaos synchronization approach in the presence of noise and uncertainty. For this purpose, the modified Chua oscillators are added to the base station and sensor nodes to generate the chaotic signals. Chaotic signals are impregnated with the noise and uncertainty. At first, we apply the modified independent component analysis to separate the noise from the chaotic signals. Then, using the adaptive finite-time sliding mode controller, a control law and an adaptive parameter-tuning method is proposed to achieve the finite-time chaos synchronization under the noisy conditions and parametric uncertainties. Synchronization between the base station and each of the sensor nodes is realized by multiplying a selection matrix by the specified chaotic signal which is broadcasted by the base station to the sensor nodes. Simulation results are presented to show the effectiveness and applicability of the proposed technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号