首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Chaotic systems in practice are always influenced by some uncertainties and external disturbances. This paper investigates the problem of practical synchronization of fractional-order chaotic systems. Based on Lyapunov stability theory and a fractional-order differential inequality, a modified adaptive control scheme and adaptive laws of parameters are developed to robustly synchronize coupled fractional-order chaotic systems with unknown parameters and uncertain perturbations. This synchronization approach is simple, global and theoretically rigorous. Simulation results for two fractional-order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

2.
This paper deals with the global exponential stability analysis problem for a general class of uncertain stochastic neural networks with mixed time delays and Markovian switching. The mixed time delays under consideration comprise both the discrete time-varying delays and the distributed time-delays. The main purpose of this paper is to establish easily verifiable conditions under which the delayed stochastic neural network is robustly exponentially stable in the mean square in the presence of parameters uncertainties, mixed time delays, and Markovian switching. By employing new Lyapunov–Krasovskii functionals and conducting stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the criteria for the robust exponential stability, which can be readily checked by using some standard numerical packages such as the Matlab LMI Toolbox. The criteria derived are dependent on both the discrete time delay and distributed time delay, and, are therefore, less conservative. A simple example is provided to demonstrate the effectiveness and applicability of the proposed testing criteria. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, the National Natural Science Foundation of China under Grant 60774073, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the Natural Science Foundation of Jiangsu Education Committee of China under Grant 06KJD110206, the Scientific Innovation Fund of Yangzhou University of China under Grant 2006CXJ002, and the Alexander von Humboldt Foundation of Germany.  相似文献   

3.
The LaSalle-type theorem for the neutral stochastic differential equations with delay is established for the first time and then applied to propose algebraic criteria of the stochastically asymptotic stability and almost exponential stability for the uncertain neutral stochastic differential systems with delay. An example is given to verify the effectiveness of obtained results.  相似文献   

4.
ROBUSTCONTROLVIASTATEFEEDBACKFORACLASSOFUNCERTAINBILINEARSYSTEMS¥ChenSonglin(陈松林);ZhuZuchi(朱祖慈)(EastChinaInstituteofMetallurg...  相似文献   

5.
In this paper we propose sufficient conditions for the robust stability of time-invariant uncertain piecewise-linear systems using homogeneous polynomial Lyapunov functions. The proposed conditions are expressed in terms of linear matrix inequalities, which can be numerically determined. We solve the stabilization of piecewise uncertain linear control systems by using state piecewise-linear feedback. We propose an illustrative example to show the efficiency of the proposed approach.  相似文献   

6.
In this note some points for paper [Huabin Chen, Chuanxi Zhu, Peng Hu, Yong Zhang, Delayed-state-feedback exponential stabilization for uncertain Markovian jump systems with mode-dependent time-varying state delays, Nonlinear Dyn. (2012), doi:10.1007/s11071-012-0324-3] are presented.  相似文献   

7.
Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.  相似文献   

8.
In this paper, uncertain switched Cohen–Grossberg neural networks with interval time-varying delay and distributed time-varying delay are proposed. Novel multiple Lyapunov functions are employed to investigate the stability of the switched neural networks under the switching rule with the average dwell time property. Sufficient conditions are obtained in terms of linear matrix inequalities (LMIs) which guarantee the exponential stability for the switched Cohen–Grossberg neural networks. Numerical examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

9.
In this paper, a projective synchronization problem of master–slave chaotic systems is investigated. More specifically, a fuzzy adaptive controller is investigated for a projective synchronization of uncertain multivariable chaotic systems. The adaptive fuzzy-logic systems are used to approximate the unknown functions. A decomposition property of the control gain matrix is used in the controller design and the stability analysis. A Lyapunov approach is employed to derive the parameter adaptation laws and prove the boundedness of all signals of the closed-loop system as well as the exponential convergence of the synchronization errors to an adjustable region. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme.  相似文献   

10.
This paper discusses the synchronization and anti-synchronization of new uncertain unified chaotic systems (UUCS). Based on the idea of active control, a novel active Pinning control strategy is presented, which only needs a state of new UUCS. The proposed controller can achieve synchronization between a response system and a drive system, and ensure the synchronized robust stability of new UUCS. Numerical simulations of new UUCS show that the controller can make chaotic systems achieve synchronization or anti-synchronization in a quite short period and both are of good robust stability.  相似文献   

11.
In this paper, the global robust exponential stability of interval neural networks with delays and inverse Hölder neuron activation functions is considered. By using linear matrix inequality (LMI) techniques and Brouwer degree properties, the existence and uniqueness of the equilibrium point are proved. By applying Lyapunov functional approach, a sufficient condition which ensures that the network is globally robustly exponentially stable is established. A numerical example is provided to demonstrate the validity of the theoretical results.  相似文献   

12.
Three new power law inequalities for fractional derivative are proposed in this paper. We generalize the original useful power law inequality, which plays an important role in the stability analysis of pseudo state of fractional order systems. Moreover, three stability theorems of fractional order systems are given in this paper. The stability problem of fractional order linear systems can be converted into the stability problem of the corresponding integer order systems. For the fractional order nonlinear systems, a sufficient condition is obtained to guarantee the stability of the true state. The stability relation between pseudo state and true state is given in the last theorem by the final value theorem of Laplace transform. Finally, two examples and numerical simulations are presented to demonstrate the validity and feasibility of the proposed theorems.  相似文献   

13.
This paper focuses the issue of state estimation for a class of switched discrete-time stochastic bidirectional associative memory (BAM) neural networks with time varying delay. The main purpose of this paper is to estimate the neuron states through available output measurements such that the dynamics of the error state system to be robustly exponentially stable. By employing average dwell time approach together with piecewise Lyapunov functional technique, a set of sufficient conditions is derived with respect to all admissible uncertainties, to guarantee the existence of the desired state estimator for the uncertain switched discrete-time BAM delayed neural networks. Specifically, we derive sufficient conditions to achieve robust state estimation with the characterization of complex effects of time delays, parameter uncertainties, and stochastic perturbations. In particular, the parameter uncertainties are assumed to be time varying and unknown, but norm bounded. It should be mentioned that our estimation results are delay dependent, which depend on not only the upper bounds of time delay, but also their lower bounds. More precisely, the desired estimator matrix gain is obtained in terms of the solution of the derived LMIs. Finally, numerical examples with a simulation result are given to illustrate the effectiveness and applicability of the obtained results.  相似文献   

14.
This paper is concerned with the stabilization problem for a class of uncertain chaotic systems. Based on a set of linguistic rules, a novel variable universe fuzzy sliding-mode control approach is designed to improve the robustness and the stability of system. Based on Lyapunov stability theory, the overall closed-loop system is shown to be stable. The designed controller not only can control the uncertain chaotic system to a desired state, but also the control action is smooth without chattering. Simulation examples are presented to further illustrate the advantage of the proposed method.  相似文献   

15.
针对复杂环境下运载体观测信息不完全测量并且存在随机干扰不确定的传递对准问题,研究了不完全测量随机不确定系统的鲁棒稀疏网格求积分(H_∞-SGQKF)的高斯逼近滤波算法。基于非线性离散系统的最优贝叶斯滤波框架和间断观测滤波算法以及不确定性扰动噪声下的H_∞范数的鲁棒SGQKF算法,给出了不完全测量的稀疏网格求积分的高斯逼近滤波算法;通过非线性系统随机稳定性理论,分析并给出了系统估计误差和估计误差方差有界的充分条件,同时给出了系统稳定的不完全测量时的丢包率临界值,证明间断观测条件下的不完全测量H_∞-SGQKF算法是稳定的。通过传递对准仿真试验和某型激光捷联式惯性导航系统的跑车试验对该算法进行了验证。结果表明,该方法比未采用鲁棒的不完全测量的稀疏网格求积分滤波的传递对准精度有所提高,说明不完全测量的鲁棒稀疏网格求积分滤波算法是正确的、稳定的,并且具有鲁棒性能。  相似文献   

16.
This paper concerns the problem of robust stabilization of autonomous and non-autonomous fractional-order chaotic systems with uncertain parameters and external noises. We propose a simple efficient fractional integral-type sliding surface with some desired stability properties. We use the fractional version of the Lyapunov theory to derive a robust sliding mode control law. The obtained control law is single input and guarantees the occurrence of the sliding motion in a given finite time. Furthermore, the proposed nonlinear control strategy is able to deal with a large class of uncertain autonomous and non-autonomous fractional-order complex systems. Also, Rigorous mathematical and analytical analyses are provided to prove the correctness and robustness of the introduced approach. At last, two illustrative examples are given to show the applicability and usefulness of the proposed fractional-order variable structure controller.  相似文献   

17.
This paper proposes an active disturbance rejection adaptive controller for tracking control of a class of uncertain nonlinear systems with consideration of both parametric uncertainties and uncertain nonlinearities by effectively integrating adaptive control with extended state observer via backstepping method. Parametric uncertainties are handled by the synthesized adaptive law and the remaining uncertainties are estimated by extended state observer and then compensated in a feedforward way. Moreover, both matched uncertainties and unmatched uncertainties can be estimated by constructing an extended state observer for each channel of the considered nonlinear plant. Since parametric uncertainties can be reduced by parameter adaptation, the learning burden of extended state observer is much reduced. Consequently, high-gain feedback is avoided and improved tracking performance can be expected. The proposed controller theoretically guarantees a prescribed transient tracking performance and final tracking accuracy in general while achieving asymptotic tracking when the uncertain nonlinearities are not time-variant. The motion control of a motor-driven robot manipulator is investigated as an application example with some suitable modifications and improvements, and comparative simulation results are obtained to verify the high tracking performance nature of the proposed control strategy.  相似文献   

18.
This paper is devoted to the study of the problem of exponential asymptotic stability of the rotational motion of a gyrostat using servo-control moments which are applied to the internal rotors. The servo-control moments which impose the rotational motion are obtained. The stabilizing servo-control moments are obtained from the conditions to ensure exponential asymptotic stability of the desired motion. Estimations of the phase coordinations as exponential functions are presented. The method based on a choice of the structural form of the servo-control moments such that the equations of motion reduce to a system of differential equations with exponential asymptotic stability of an special solution.  相似文献   

19.
In the present paper, two types of complex delayed dynamical networks with spatially and temporally varying state variables are proposed. The first is that all nodes in the network have the same time-varying delay. The second is that different nodes have different time-varying delays. We respectively investigate the stabilization problem of these two types of complex network models by pinning a small fraction of nodes with negative feedback controllers. With the help of Lyapunov functionals and some inequality techniques, several asymptotic stability and exponential stability conditions are established. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.  相似文献   

20.
In this paper, an adaptive synchronization scheme is proposed for a class of nonlinear systems. The design utilizes an adaptive observer, which is quite useful in establishing a transmitter–receiver kind of synchronization scheme. The proposed approach is based on contraction theory and provides a very simple way of establishing exponential convergence of observer states to actual system states. The class of systems addressed here has uncertain parameters, associated with the part of system dynamics that is a function of measurable output only. The explicit conditions for the stability of the observer are derived in terms of gain selection of the observer. Initially, the case without uncertainty is considered and then the results are extended to the case with uncertainty in parameters of the system. An application of the proposed approach is presented to synchronize the family of N chaotic systems which are coupled through the output variable only. The numerical results are presented for designing an adaptive observer for the chaotic Chua system to verify the efficacy of the proposed approach. Explicit bounds on observer gains are derived by exploiting the properties of the chaotic attractor exhibited by Chua’s system. Convergence of uncertain parameters is also analyzed for this case and numerical simulations depict the convergence of parameter estimates to their true value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号