首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A closed form solution to the convective instability in a composite system of fluid and porous layers with vertical throughflow is presented. The boundaries are considered to be rigid-permeable and insulating to temperature perturbations. Flow in the porous layer is governed by Darcy–Forchheimer equation and the Beavers–Joseph condition is applied at the interface between the fluid and the porous layer. In contrast to the single-layer system, it is found that destabilization due to throughflow arises, and the ratio of fluid layer thickness to porous layer thickness, , too, plays a crucial role in deciding the stability of the system depending on the Prandtl number.  相似文献   

2.
We present an analytical investigation of the effect of vertical throughflow on the onset of convection, induced by internal heating, in a composite porous medium consisting of two horizontal layers. If convection is induced by internal heating, the bulk of the convection occurs in the upper half of the layer where the buoyancy force is destabilizing. For the case of heterogeneous porous medium, if the permeability increases in the upward direction, or if the thermal conductivity decreases in the upward direction, instability is increased. It is also found that upward throughflow is stabilizing but a modest amount of downward throughflow is destabilizing.  相似文献   

3.
Linear stability analysis has been performed to investigate the effect of internal heat generation on the criterion for the onset of Marangoni convection in a two-layer system comprising an incompressible fluid-saturated anisotropic porous layer over which lies a layer of the same fluid. The upper non-deformable free surface and the lower rigid surface are assumed to be insulated to temperature perturbations. The fluid flow in the porous layer is governed by the modified Darcy equation and the Beavers–Joseph empirical slip condition is employed at the interface between the two layers. The resulting eigenvalue problem is solved exactly. Besides, analytical expression for the critical Marangoni number is also obtained by using regular perturbation technique with wave number as a perturbation parameter. The effect of internal heating in the porous layer alone exhibits more stabilizing effect on the system compared to its presence in both fluid and porous layers and the system is least stable if the internal heating is in fluid layer alone. It is found that an increase in the value of mechanical anisotropy parameter is to hasten the onset of Marangoni convection while an opposite trend is noticed with increasing thermal anisotropy parameter. Besides, the possibilities of controlling (suppress or augment) Marangoni convection is discussed in detail.  相似文献   

4.
The stability of natural penetrative convection arising due to a uniform internal heat source in a vertical porous layer saturated with an Oldroyd-B fluid is investigated. The vertical walls of the porous layer are impermeable and maintained at different uniform temperatures. The energy stability analysis performed reveals that the system is unconditionally stable even in the presence of internal heating in the case of Newtonian fluids, while for viscoelastic fluids the base flow is found to be unstable. As the energy stability analysis of Gill type is unable to decide the stability of the system, the Galerkin method is used to solve the complex eigenvalue problem. The internal heating introduces asymmetry in the basic flow and amounts to the existence of different set of onset modes. The internal heating and stress relaxation parameter facilitates instability of the system while increasing strain retardation parameter discloses stabilizing effect on the system. Moreover, the critical Darcy–Rayleigh number, wave number and wave speed become invariant as Ns becomes large. The streamlines and isotherms presented herein demonstrate the development of complex dynamics at the critical state.  相似文献   

5.
The effect of internal heat source on convection in a layer of fluid in a porous medium was analyzed using linear and nonlinear analysis, and boundaries are assumed to be stress-free and isothermal. Normal mode technique is used for linear analysis, and energy method is used for nonlinear stability analysis. The presence of heat generation leads to the possibility of the existence of a subcritical instability. Effects of increase of Darcy–Brinkman number and internal heat parameter on critical Rayleigh numbers were analyzed numerically using Chebyshev pseudospectral method.  相似文献   

6.
This article deals with the steady Darcy free convection adjacent to a heated or cooled permeable vertical flat plate of constant temperature, which is embedded in a fluid-saturated porous medium of uniform ambient temperature T . There is a uniform horizontal throughflow of the fluid and a volumetric heat generation q′′′ takes place, which is considered to be a power-law function of the local temperature difference T ? T , i.e., q′′′ ~ (T ? T ) n . To be specific, two cases of this type of volumetric heat generation are considered in the analysis in some detail, namely, the linear and the quadratic cases, n = 1 and n = 2, respectively.  相似文献   

7.
A linear instability analysis for the inception of double-diffusive convection with a concentration based internal heat source is presented. The system encompasses a layer of fluid which lies above a porous layer saturated with the same fluid. Detailed stability characteristics results are presented for key physical parameters including the solute Rayleigh number, depth ratio of the fluid to porous layer and strength of radiative heating.  相似文献   

8.
Effects of a conductive wall on natural convection in a square porous enclosure having internal heating at a rate proportional to a power of temperature difference is studied numerically in this article. The horizontal heating is considered, where the vertical walls heated isothermally at different temperatures while the horizontal walls are kept adiabatic. The Darcy model is used in the mathematical formulation for the porous layer and finite difference method is applied to solve the dimensionless governing equations. The governing parameters considered are the Rayleigh number (0 ???Ra ???1000), the internal heating and the local exponent parameters (0 ????? ???5), (1 ????? ???3), the wall to porous thermal conductivity ratio (0.44 ???Kr ???9.9) and the ratio of wall thickness to its width (0.02 ???D ???0.5). The results are presented to show the effect of these parameters on the fluid flow and heat transfer characteristics. It is found a strong internal heating can generate significant maximum fluid temperature more than the conductive solid wall. Increasing value thermal conductivity ratio and/or decreasing the thickness of solid wall can increase the maximum fluid temperature. It is also found that at very low Rayleigh number, the heat transfer across the porous enclosure remain stable for any values of the thermal conductivity ratio.  相似文献   

9.
The present paper deals with the study of heat transfer characteristics in the laminar boundary layer flow of an incompressible viscous fluid over an unsteady stretching sheet which is placed in a porous medium in the presence of viscous dissipation and internal absorption or generation. Similarity transformations are used to convert the governing time dependent nonlinear boundary layer equations into a system of non-linear ordinary differential equations containing Prandtl number, Eckert number, heat source/sink parameter, porous parameter and unsteadiness parameter with appropriate boundary conditions. These equations are solved numerically by applying shooting method using Runge-Kutta-Fehlberg method. Comparison of numerical results is made with the earlier published results under limiting cases. The effects of the parameters which determine the velocity and temperature fields are discussed in detail.  相似文献   

10.
The effects of hydrodynamic and thermal heterogeneity, for the case of variation in both the horizontal and vertical directions, on the onset of convection in a horizontal layer of a saturated porous medium uniformly heated from below, with weak vertical throughflow, are studied analytically for the case of weak heterogeneity. It is found that when the boundary conditions at the upper and lower boundaries are symmetric, the throughflow magnitude and the permeability and conductivity gradients enter the expression for the critical Rayleigh number at second order. The throughflow on its own is stabilizing but the combination of throughflow and heterogeneity may be either stabilizing or destabilizing.  相似文献   

11.
The effect of vertical heterogeneity of permeability, on the onset of convection in a horizontal layer of a saturated porous medium, uniformly heated from below but with a non-uniform basic temperature gradient resulting from vertical throughflow, is studied analytically using linear stability theory. It is found that, to first order, a linear variation of the reciprocal of permeability with depth has no effect on the critical value of the Rayleigh number Ra c based on the harmonic mean of the permeability, but a quadratic variation increasing in the upwards direction leads to a reduction in Ra c.  相似文献   

12.
The effect of vertical throughflow on the onset of convection in a rectangular box occupied by a saturated porous medium uniformly heated from below, is studied using linear stability theory. It is found that, for small values of the throughflow, the stabilizing effect of the throughflow and the stabilizing effect of the confining lateral walls of the box are approximately independent of each other.  相似文献   

13.
We examine the effect of local thermal non-equilibrium on the steady state heat conduction in a porous layer in the presence of internal heat generation. A uniform source of heat is present in either the fluid or the solid phase. A two-temperature model is assumed and analytical solutions are presented for the resulting steady-state temperature profiles in a uniform porous slab. Attention is then focussed on deriving simple conditions which guarantee local thermal equilibrium.  相似文献   

14.
The vertical throughflow with viscous dissipation in a horizontal porous layer is studied. The horizontal plane boundaries are assumed to be isothermal with unequal temperatures and bottom heating. A basic stationary solution of the governing equations with a uniform vertical velocity field (throughflow) is determined. The temperature field in the basic solution depends only on the vertical coordinate. Departures from the linear heat conduction profile are displayed by the temperature distribution due to the forced convection effect and to the viscous dissipation effect. A linear stability analysis of the basic solution is carried out in order to determine the conditions for the onset of convective rolls. The critical values of the wave number and of the Darcy–Rayleigh number are determined numerically by the fourth-order Runge–Kutta method. It is shown that, although generally weak, the effect of viscous dissipation yields an increase of the critical value of the Darcy–Rayleigh number for downward throughflow and a decrease in the case of upward throughflow. Finally, the limiting case of a vanishing boundary temperature difference is discussed.  相似文献   

15.
Thermo-rheological effect of temperature-dependent viscous fluid saturating a porous medium has been studied in the presence of imposed time periodic gravity field and internal heat source. Weak nonlinear stability analysis has been performed by using the power series expansion in terms of the amplitude of gravity modulation, which is considered to be small. Nusselt number is calculated numerically using Ginzburg–Landau equation. The nonlinear effects of thermo-mechanical anisotropies, internal heat source parameter, Vadász number, thermo-rheological parameter and amplitude of gravity modulation have been obtained and depicted graphically. Streamlines and isotherms have been drawn for different times. Comparisons have been made between various physical systems.  相似文献   

16.
This paper investigates the onset of convection in a vertical cylinder occupied by a saturated porous medium of vertically heterogeneous permeability. The flow is induced by an applied vertical temperature gradient and an imposed solute concentration gradient. The main interest of this paper is studying the effect of vertical throughflow on the onset of instability in this system. The study is performed using linear stability theory. The problem is of considerable interest for hydrological and geophysical situations.  相似文献   

17.
A system modeling fluid motions in horizontal porous layers, uniformly heated from below and salted from above by one salt, is analyzed. The definitely boundedness of solutions (existence of absorbing sets) is proved. Necessary and sufficient conditions ensuring the linear stability of a vertical constant throughflow have been obtained via a new approach. Moreover, conditions guaranteeing the global non-linear asymptotic stability are determined.  相似文献   

18.
The problem of steady free convection boundary layer over a vertical isothermal impermeable flat plate which is embedded in a fluid-saturated porous medium with volumetric heat generation or absorption is studied in this paper using the Darcy equation model. The case of the externally prescribed source terms S = S(x,y) is considered in this paper. It is shown that the corresponding boundary value problem depends on the sign of the plate temperature, which implies that the source term breaks the usual upflow or downflow symmetry of the free convection problem. Looking for similarity solutions, analytical and numerical solutions of the transformed boundary value problem are obtained for several values of the problem parameters. It is also shown that, contrary to the widely spread opinion, the exponential form of the internal heat generation term is not a necessary requirement of similarity reduction.  相似文献   

19.
The effect of vertical throughflow on the onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The dependences of the critical Rayleigh number for the non-oscillatory and oscillatory modes of instability on the thermophoresis and Brownian motion parameters for the cases with and without throughflow are investigated.  相似文献   

20.
A linear stability analysis is implemented to study thermal convective instability in a horizontal fluid-saturated rotating porous layer with throughflow in the vertical direction. The modified Forchheimer-extended Darcy equation that includes the time-derivative and Coriolis terms is employed as a momentum equation. The criterion for the occurrence of direct and Hopf bifurcations is obtained using the Galerkin method. It is shown that if a Hopf bifurcation is possible it always occurs at a lower value of the Darcy?CRayleigh number than the direct bifurcation. Increase in the throughflow strength and inertia parameter is to decrease the domain of Prandtl number up to which Hopf bifurcation is limited but opposite is the trend with increasing Taylor number. The effect of rotation is found to be stabilizing the system, in general. However, in the presence of both rotation and Forchheimer drag a small amount of vertical throughflow as well as inertia parameter show some destabilizing effect on the onset of direct bifurcation; a result of contrast noticed when they are acting in isolation. The existing results in the literature are obtained as limiting cases from the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号