首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One-dimensional interaction between a planar shock wave and a rubber or low-porosity foam is investigated experimentally and numerically. The considered polyurethane foam is of high density (ρ c=290 kg/m3) and lowporosity (ϕ=0.76), and this corresponds to an intermediate condition between rubber and high-porosity foam. Stress-strain relations for the low-porosity foam are investigated by machine tests, which show larger deformation against compressive force and higher non-linearity in stress-strain curve as compared with rubber. Also the low-porosity foam shows a hysteresis cycle. Experiments on shock wave-foam interactions are conducted by using a shock tube. Experimental time history of the surface stress of the foam at the end of the shock tube does not show shock type stress increase, but continuous excessive stress rise can be seen, and then dumping vibration approaching to gas dynamic pressure of the reflected shock wave is followed, and the highest stress amounts about 3∼4 times of the pressure after the reflected gas dynamic shock wave. Interactive motions of gas and the low-porosity foam are analyzed using the Lagrangean coordinates system. An elastic model for a low-porosity foam is assumed to be a single elastic material with the measured stress-strain relation. Results of numerical simulations are compared with the shock tube experiments, which show essentially same stress variations with experimental results.  相似文献   

2.
The formation of coherent structures on a flat plate in a supersonic flow is numerically investigated both in the case of strong shock incidence on the plate and in the problem of oncoming harmonic waves having an intensity of 1–5% of the freestream pressure P 0. The same mechanism of the coherent structure formation is noticed in both nonstationary problems; it is due to the manifestation of the secondary instability generated in the gas flow owing to the influence of the vortices formed at the lateral edges of the plate. An analysis of the incident wave enhancement at the rear of the plate is made for different wave intensities and wavelength to plate width ratios. The flow patterns in the plate wake indicate the generation of an intense expansion wave in this region, which accelerates the gas flow to the freestream velocity.  相似文献   

3.
The head-on collision of a planar shock wave with a dust-air suspension is studied numerically. In this study the suspension is placed inside a conduit adjacent to its rigid end-wall. It is shown that as a result of this collision two different types of transmitted shock waves are possible, depending on the strength of the incident shock wave and the dust loading ratio in the suspension. One possibility is a partially dispersed shock wave, the other is a compression wave. The flow fields resulting in these two options are investigated. It is shown that in both cases, at late times after the head-on reflection of the transmitted shock wave from the conduit end-wall a negative flow (away from the end-wall) is evident. The observed flow behavior may suggest a kind of dust particle lifting mechanism that could shed new light on the complex phenomenon of dust entrainment behind sliding shock waves.   相似文献   

4.
 Two-component laser Doppler velocimetry (LDV) measurements were made in a planar, two-dimensional flow containing an unsteady oblique shock wave formed by the convergence of two supersonic streams past a thick plate. High-speed wall pressure measurements locate the shock wave and, consequently, allow separation of the effects of shock wave motion from the turbulence fluctuations in the LDV measurements of the shock-separated free shear layer. In the current flow isolating the large-scale changes in the position of the shock from the turbulence primarily reduces the experimental scatter rather than significantly changing the shapes or magnitudes of the turbulent stress profiles. Changes in the direction of shock motion do not significantly affect the mean velocity, but do affect the turbulent stresses. Received: 11 August 1997/Accepted: 30 September 1998  相似文献   

5.
The gas flow in the zone of interaction between an oblique shock and a centered isentropic rarefaction wave is studied using the direct statistical simulation method for solving the Boltzmann equation. The data of calculations of the shock and rarefaction wave structures, flow fields, and streamlines are given for the free-stream Mach number M = 6, 4 and 2. The formation of the interaction zone is simulated by a gas flow past a double-plane wedge in which the break of the generating line leads to formation of the centered isentropic rarefaction wave. The results of calculations of this flow in solving the Boltzmann equation are given in the Euler approximation.  相似文献   

6.
The motion of an inertial dispersed admixture near a plane cylinder immersed in a steady-state hypersonic dusty flow in the presence of an oblique shock wave interacting with the bow shock is considered. It is assumed that the free-stream particle mass concentration is small and the particles do not affect the carrier flow. The III and IV shock wave interaction regimes are considered. The gas flow parameters in the shock layer are calculated from the numerical solution of the full Navier-Stokes equations for the perfect gas. A TVD second-order finite-difference scheme constructed on the basis of a finite volume method is used. For calculating the dispersed-phase parameters, including the concentration, the full Lagrangian method is used. On a wide range of variation of the particle inertia parameters, the patterns of the particle trajectories, velocity, concentration, and temperature in the shock layer are studied. The possibility of aerodynamic focusing of the particles behind the shock wave intersection point and the formation of narrow beams with a high particle concentration is revealed. These beams impinge on the cylinder surface and result in a sharp increase in the local heat fluxes. The maximal possible increase in the heat fluxes caused by the particles colliding with the cylinder surface is estimated for the flows with and without the incident oblique shock wave.  相似文献   

7.
Supersonic rotational planar and axisymmetric flows of a non-viscous, non-heat-conductive gas with arbitrary thermodynamic properties in the vicinity of a steady shock wave are studied. The differential equations describing the gas flow upstream and downstream of the discontinuity surface and the dynamic compatibility conditions at this discontinuity are used. The gas flow non-uniformity in the shock vicinity is described by the spatial derivatives of the gasdynamic parameters at a point on the shock surface. The parameters are the gas pressure, density, and velocity vector. The derivatives with respect to the directions of the streamline and normal to it, and of the shock surface and normal to it, are considered. Spatial derivatives of all gasdynamic parameters are expressed through the flow non-isobaric factor along the streamline, the streamline curvature, and the flow vorticity and non-isoenthalpy factors. An algorithm for determining these factors of the gas flow downstream of a shock wave is developed. Example calculations of these factors for imperfect oxygen and thermodynamically perfect gas are presented. The influence coefficients of the upstream flow factors on the downstream flow factors are calculated. The gas flow in the vicinity of the shock is described by the isolines of gasdynamic parameters. Uniform planar and axisymmetric flows at different distances from the axis of symmetry are examined; the isobars, isopycnics, isotachs and isoclines are used to characterize the downstream flow behind a curved shock in an imperfect gas.  相似文献   

8.
In this paper we discuss three different experimental configurations to diagnosing the modes of inelastic deformation and to evaluating the failure thresholds at shock compression of hard brittle solids. One of the manifestations of brittle material response is the failure wave phenomenon, which has been previously observed in shock-compressed glasses. However, based on the measurements from our “theory critical” experiments, both alumina and boron carbide did not exhibit this phenomenon. In experiments with free and pre-stressed ceramics, while the Hugoniot elastic limit (HEL) in high-density B4C ceramic was found to be very sensitive to the transverse stress, it was found relatively less sensitive in Al2O3, implying brittle response of the boron carbide and ductile behavior of alumina. To further investigate the effects of stress states on the shock response of brittle materials, a “divergent flow or spherical shock wave” based plate impact experimental technique was employed to vary the ratio of longitudinal and transversal stresses and to probe conditions for compressive fracture thresholds. Two different experimental approaches were considered to generate both longitudinal and shear waves in the target through the impact of convex flyer plates. In the ceramic target plates, the shear wave separates a region of highly divergent flow behind the decaying spherical longitudinal shock wave and a region of low-divergent flow. Experiments with divergent shock loading of alumina and boron carbide ceramic plates coupled with computer simulations demonstrated the validity of these experimental approaches to develop a better understanding of fracture phenomena.  相似文献   

9.
The non-free interaction between a shock wave and the boundary layer on a swept plate set at incidence in the undisturbed flow is studied using different experimental methods including special laser techniques for visualizing supersonic conical gas flows. It is shown that under shock-layer conditions the non-free interaction can lead to conical flow breakdown before the incident shock reaches the leading edge of the plate.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 45–58. Original Russian Text Copyright © 2004 by Zubin and Ostapenko.  相似文献   

10.
The flow around a blunt body at hypersonic speed by a current of nonequilibrium ionized monatomic nonviscous radiating gas is studied, with consideration of temperature difference between the electron gas and the ion-atom gas. Atomic excitation due to collisions with electrons and subsequent ionization, as well as photoionization, are taken into consideration. Since the value of the shock wave separation is small in comparison with the characteristic dimension of the body, the radiation transfer equation is written in the local onedimensional planar layer approximation. The influence of incident flow parameters upon the flow field across the shock wave and the distribution of radiation thermal flux are studied.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 9–14, January-February, 1972.  相似文献   

11.
Results of numerical simulation of interaction between an oblique shock wave and a turbulent boundary layer formed in a supersonic (Mach number M =5) flow past a flat plate are presented. The computations are performed for three cases of interaction of different intensity, which result in an attached or detached flow. Numerical results are compared with experimental data. The effect of flow turbulence and shockwave unsteadiness on flow parameters is studied.  相似文献   

12.
The macroparameter profiles in a strong shock wave propagating in a single-component monatomic gas are investigated. The interaction between the molecules is described by the variable-diameter sphere model. Qualitative information concerning the shock wave parameters is obtained by direct statistical simulation (Monte-Carlo) method. Using the data obtained, simple approximate gas-velocity dependences of the stress and the heat flow are found and the linear Newton and Fourier relations are generalized.  相似文献   

13.
Laminar boundary layer flows behind constant speed shock waves moving into a dusty gas are analyzed numerically. The basic equations of two-phase flows are derived in shock fixed coordinates and solved by an implicit finite-difference method for the side wall boundary layer in a dusty gas shock tube. The development of the boundary layer and resulting velocity and temperature profiles, respectively, for the gas and particles are given from the shock front to far downstream. The effects of diaphragm pressure ratio, mass loading ratio of particles and particle size upon the flow properties are discussed in detail.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

14.
The present paper discusses the one-dimensional unsteady-state flow of a gas resulting from the motion of a piston in the presence of weak perturbing factors, with which the investigation of the perturbed (with respect to the usual self-similar conditions) motion reduces to the solution of ordinary differential equations, is indicated. The distributions of the parameters of the gas between the piston and the shock wave are found. The conditions under which there is acceleration or slowing down of the shock front are clarified. As an example, this paper considers the unsteady-state motion of a conducting gas in a channel with solid electrodes under conditions where electrical energy is generated, and the flow of a gas taking radiation into account, under the assumption of optical transparency of the medium. The theory developed is used to solve the problem of the motion of a thin wedge with a high supersonic velocity in an external axial magnetic field, taking account of the luminescence of the layer of heated gas between the wedge and the shock wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 17–25, September–October, 1970.  相似文献   

15.
Abstract. This paper reports on the characteristics of a compact vertical diaphragmless shock tube, which was constructed and tested in the Shock Wave Research Center to study experimentally the behavior of toroidal shock waves. It is 1.15 m in height and has a self-sustained co-axial vertical structure consisting of a 100 mm i.d. outer tube and an 80 mm o.d. inner tube. To create a ring shaped shock wave between the inner and outer tubes, a rubber sheet is inserted to separate a high pressure driver gas from a test gas, which is bulged with auxiliary high pressure helium from the behind. When the rubber membrane is contracted by the sudden release of the auxiliary gas so as to break the seal, shock waves are formed. Special design features of the shock tube are described and their role in producing repeatable shock waves is discussed. Its special opening characteristics make possible the production of annular shaped shock waves that are unlikely met with a conventional tube that uses rupturing diaphragms. Performance of the shock tube is evaluated in terms of the shock wave Mach numbers and the measured flow properties. It eventually showed a higher degree of repeatability and the scatter in the shock wave Mach numbers Ms was found to be 0.2% for Ms ranging from 1.1 to 1.8. The shock wave Mach number so far measured agreed very well with the simple shock tube theory. Received 3 February 1999 / Accepted 6 April 2000  相似文献   

16.
Gas flow and heat transfer on the surfaces of sharp and blunt plates is experimentally investigated in the presence of two forward-looking wedges at the Mach numbers M = 5, 6, and 8 and the Reynolds numbers up to ReL = 27×106. It is shown that the entropy layer generated by a small bluntness of the leading edge of the plate can considerably change the heat transfer, the gas pressure, and the friction in the zone of interference of the shock with the plate boundary layer. Under certain conditions a small plate bluntness can also lead to a qualitative change in the flow structure. The effect of constriction of the channel between the wedges on the interference flow is studied.  相似文献   

17.
Y. Onishi 《Shock Waves》1991,1(4):293-299
The flow fields associated with the interaction of a normal shock wave with a plane wall kept at a constant temperature were studied based on kinetic theory which can describe appropriately the shock structure and its reflection process. With the use of a difference scheme, the time developments of the distributions of the fluid dynamic quantities (velocity, temperature, pressure and number density of the gas) were obtained numerically from the BGK model of the Boltzmann equation subject to the condition of diffusive-reflection at the wall for several cases of incident Mach number:M 1=1.2, 1.5, 2.0, 3.0, 4.0, 5.0 and 6.0. The reflection process of the shocks is shown explicitly together with the resulting formation of the flow fields as time goes on. The nonzero uniform velocity toward the wall occurring between the viscous boundary layer and the reflected shock wave is found to be fairly large, the magnitude of which is of the order of several percent of the velocity induced behind the incident shock, decreasing as the incident Mach number increases. It is also seen that a region of positive velocity (away from the wall) within the viscous boundary layer manifests itself in the immediate vicinity of the wall, which is distinct for larger incident Mach numbers. Some of the calculated density profiles are compared with available experimental data and also with numerical results based on the Navier-Stokes equations. The agreement between the three results is fairly good except in the region close to the wall, where the difference in the conditions of these studies and the inappropriateness of the Navier-Stokes equations manifest themselves greatly in the gas behavior.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

18.
Analytical solution of shock wave propagation in pure gas in a shock tube is usually addressed in gas dynamics. However, such a solution for granular media is complex due to the inclusion of parameters relating to particles configuration within the medium, which affect the balance equations. In this article, an analytical solution for isothermal shock wave propagation in an isotropic homogenous rigid granular material is presented, and a closed-form solution is obtained for the case of weak shock waves. Fluid mass and momentum equations are first written in wave and (mathematical) non-conservation forms. Afterwards by redefining the sound speed of the gas flowing inside the pores, an analytical solution is obtained using the classical method of characteristics, followed by Taylor’s series expansion based on the assumption of weak flow which finally led to explicit functions for velocity, density and pressure. The solution enables plotting gas velocity, density and pressure variations in the porous medium, which is of high interest in the design of granular shock isolators.  相似文献   

19.
The process of reflection of linear disturbances from a plane shock wave is considered in the case when these disturbances are caused by a weak energy-release source in a uniform supersonic flow of an inviscid non-heat-conducting gas. It is shown that, in the basic range of constitutive parameters, this interaction proceeds in such a way that the quantity characterizing the disturbance which provides a force load on the lateral surface of a body substantially changes when the reflection from the shock wave occurs.  相似文献   

20.
Because of their low mechanical wave speed, high strain rate testing of rubber is highly difficult. Indeed, stress and strain homogeneity is hard to achieve. In this paper, a semi-analytic inverse solution is proposed. This solution is based on a uni-axial stress state assumption in the specimen. Moreover, a new-Hookean law is assumed for rubber. The new method is successfully applied to a high strain rate test on a synthetic rubber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号