首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
低地球轨道上的航天器易受到微流星体和空间碎片的超高速撞击,导致其严重损伤甚至灾难性的失效。撞击损伤特性研究是航天器防护设计的重要问题。本文采用非火药驱动二级轻气炮发射球形弹丸,对铝双层板结构进行超高速撞击实验研究,从而模拟空间碎片对航天器防护结构的超高速撞击作用。实验得到了铝双层板结构在弹丸撞击速度为2.33±0.12km/s和4.36±0.10km/s两种情况时,其前板和后板的撞击损伤随前板厚度变化的规律,随着前板厚度的增加,前板穿孔直径增大,后板撞击中心的损伤减轻,后板上大弹坑由撞击中心移至外围。当撞击速度超过弹丸破碎速度时,后板上将出现弹坑密集分布区。实验结果表明,前板厚度的选取对双层板结构的撞击损伤区域会产生影响。  相似文献   

2.
选用铝和火山岩两种材料的弹丸,对航天器典型Whipple防护结构进行超高速撞击数值仿真计算.结果表明在弹丸质量和速度相同的情况下,铝弹丸撞击航天器防护结构的损伤效应要远远大于火山岩弹丸撞击的损伤,这是由弹丸材料特性决定的.  相似文献   

3.
非球弹丸超高速撞击航天器防护结构数值模拟   总被引:2,自引:0,他引:2  
采用AUTODYN软件对非球弹丸超高速正撞击航天器单防护屏防护结构进行了数值模拟,给出了2维及3维模拟的结果。研究了在相同质量和速度的条件下,不同形状弹丸长径比、撞击方向等对超高速撞击防护结构所产生碎片云特性及舱壁损伤尺寸的影响,并与球形弹丸撞击所产生的碎片云及舱壁损伤进行了比较。结果表明:弹丸的长径比越大,弹丸的穿孔能力越强;非球弹丸的撞击方向不同,所产生的碎片云形状、质量分布、破碎的程度和穿孔的能力是不同的。  相似文献   

4.
波阻抗梯度材料加强型Whipple结构具有优异的防护性能。本文的目的是研究Al/Mg波阻抗梯度材料加强型Whipple结构在5.0 km/s撞击速度下的超高速撞击特性,以及除具有高阻抗的迎撞击面在弹丸中产生更高的冲击压力和温升外,影响波阻抗梯度材料防护性能的主要因素。本文中提出一种由铝合金表层和镁合金基底组成的面密度等效于1.5 mm厚铝合金的新型波阻抗梯度防护屏,采用二级轻气炮在5.0 km/s的撞击速度下对Al/Mg波阻抗梯度材料加强型和铝合金Whipple结构进行了初步超高速撞击对比实验,研究了超高速撞击防护屏穿孔、碎片云和后墙损伤特性。与铝合金防护结构相比,Al/Mg防护结构具有防护屏穿孔翻边更明显、后墙损伤较轻微、碎片云扩散半角大和撞击坑细化程度高4个主要特征。本文中开展了理论分析与计算,研究了冲击耦合过程、波传播特性和热力学状态等。结果表明:不受面密度影响,Al/Mg防护屏能改变冲击波在靶中的传播特征,使弹丸破碎程度更高,并且提升了防护屏中的内能转化率,具有优异的动能耗散特性。因此,与同等面密度的铝合金Whipple结构相比,Al/Mg结构具有更优异的防护性能。  相似文献   

5.
武强  张庆明  龚自正  任思远  刘海 《爆炸与冲击》2021,41(2):021406-1-021406-9
以二级轻气炮作为加载手段,针对以PTFE/Al活性材料为防护屏的Whipple防护结构,开展不同弹丸尺寸、不同碰撞速度的超高速撞击实验。利用激光阴影照相设备,获得并分析了碎片云特性;通过回收的防护结构靶板,研究了活性材料防护结构超高速撞击条件下的后板损伤特性;通过与经典Christiansen撞击极限方程对比,获得活性材料Whipple结构防护性能,并拟合得到新型防护结构的撞击极限曲线。结果表明,相较于同面密度铝合金材料,活性材料超高速撞击条件下的冲击起爆反应使得碎片云中具有侵彻能力的碎片大幅减少,从而显著提升航天器的防护能力,撞击速度为2.31 km/s时最大可提升45%。  相似文献   

6.
玄武岩/Kevlar纤维布填充防护结构撞击极限及损伤特性   总被引:1,自引:0,他引:1  
为了研究玄武岩/Kevlar纤维布填充防护结构的撞击极限和损伤特性,采用非火药驱动二级轻气炮进行超高速撞击实验,拟合撞击极限曲线,并与Nextel/Kevlar填充防护结构及三层铝防护结构进行比较。结果表明:玄武岩/Kevlar填充防护结构具有和Nextel/Kevlar填充防护结构类似的防护效果,防护性能优于三层铝防护结构。进一步研究填充防护结构铝合金防护屏、纤维布填充层及铝合金舱壁的损伤形式,分析了造成防护屏、填充层与舱壁不同损伤形貌的原因,探索了玄武岩/Kevlar纤维布填充防护结构的防护机理,得出玄武岩纤维布填充层使弹丸碎化,而Kevlar填充层消耗、吸收和分散弹丸或碎片云的能量。  相似文献   

7.
文雪忠  黄洁  赵君尧  柯发伟  马兆侠  柳森 《爆炸与冲击》2021,41(2):021409-1-021409-9
为验证利用后墙拆分方式提升防护结构性能的可行性,通过开展数值模拟(铝弹丸直径6.0 mm,撞击速度5.0~8.3 km/s)和超高速撞击实验(铝弹丸直径6.0 mm,撞击速度约8.3 km/s),研究了3种防护结构的性能差异以及不同撞击速度对结构防护性能的影响。防护结构主要包括Whipple结构和两种后墙拆分结构。针对直径6.0 mm铝弹丸分别以5.0、6.0、7.0、8.3 km/s的速度撞击防护结构的工况,借助Autodyn软件开展了数值模拟,并将模拟结果与在弹道靶设备上获得的超高速撞击实验结果进行了对比。模拟结果与实验结果均表明,在相同撞击状态下两种后墙拆分结构的防护性能有所差异,但均优于相同面密度的Whipple结构,且随着撞击速度的提高,这种优势具有增大的趋势。  相似文献   

8.
采用硅酸盐质弹丸模拟低密度脆性微流星体,开展了航天器典型Whipple 防护结构撞击实验研究,获得了低密度微流星体弹丸损伤模式和损伤规律,实验表明,当弹丸撞击速度在1.1~1.4 km/s,前板损伤模式从花瓣式开裂转变为穿孔,当速度为1.4 km/s 时后板鼓包头上出现裂纹;随着弹丸速度的进一步增加,后板出现剥落现象,并形成花瓣撕裂,当弹丸撞击速度达到1.95 km/s 时后板被击穿,导致防护结构受到破坏.  相似文献   

9.
铝合金Whipple防护结构高速撞击实验研究   总被引:9,自引:1,他引:9  
为了掌握航天器防护结构受空间碎片高速撞击的损伤破坏模式及其防护性能,采用二级轻气炮发射球形弹丸,对铝合金Whipple防护结构进行高速撞击实验研究。根据实验结果分析了铝合金Whipple防护结构的防护屏和舱壁在不同速度区间的损伤模式特征,以及薄铝板防护屏高速撞击穿孔和舱壁弹坑分布随弹丸直径、弹丸撞击速度变化的规律。通过固定弹丸直径,改变弹丸撞击速度,寻找临界撞击速度的方法获得了铝合金Whipple防护结构在0.5~5.5 km/s撞击速度区间内的撞击极限曲线,并与由Christiansen撞击极限方程得到的撞击极限曲线进行了比较,结果表明,实验最小临界弹丸直径略大于预测值。  相似文献   

10.
为研究碳纤维/环氧树脂复合材料在超高速撞击下的成坑特性,利用二级轻气炮开展了直径为1.00~3.05 mm的铝球以3.0~6.5 km/s的速度正撞击尺寸为100 mm×100 mm×20 mm的碳纤维/环氧树脂复合材料靶板的实验,获得了碳纤维/环氧复合材料靶板的成坑形貌特征,并测量了坑深、成坑表面积、表面损伤面积等尺寸。结合文献数据分析了靶板的无量纲成坑深度p/dp、无量纲坑径系数Dh/dp、表面损伤面积等效直径De等随撞击速度、撞击能量的变化规律。结果表明:碳纤维/环氧树脂复合材料的无量纲成坑深度p/dp和无量纲坑径系数Dh/dp均与撞击速度呈2/3次幂关系;表面损伤面积等效直径De与弹丸撞击能量E呈幂函数关系;成坑深度大于成坑半径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号