首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 124 毫秒
1.
爆轰波管中铝粉尘爆轰的数值模拟   总被引:10,自引:0,他引:10  
洪滔  秦承森 《爆炸与冲击》2004,24(3):193-200
用两相流模型对爆轰波管中的铝粉尘的爆轰波进行了研究。模型考虑了气体和颗粒两相间速度和温度的不同及由于管壁引起的对流热传导和粘性引起的耗散,考虑了由于铝颗粒表面粗糙使得表面积增加的因素。铝颗粒的点火判据使用了新的判据,即铝颗粒在激波后的气流中温度达到铝的熔点且铝全部熔化即被点火。数值模拟了内径为15.2cm的爆轰波管中铝粉尘中爆轰波的传播和发展,得到了爆轰波速度及铝颗粒点火距离,还得到了爆轰流场中物理量的分布。从前导激波面到CJ面处,两相间的速度和温度有明显的差别。还考虑了粒子由于粗糙引起的表面积增加对爆轰波的影响,这个因素对铝颗粒的点火距离的影响较大,对这里计算的铝粉尘爆轰波的速度基本没有影响。结果表明,两相流模型可以较好地描述铝粉尘的爆轰过程,得到具有很粗糙表面、平均粒子直径为3.4m的铝粉尘浓度为304g/m3时爆轰波的速度为1.63km/s,点火距离为3mm,与实验值符合较好。  相似文献   

2.
大型水平爆轰管中悬浮铝粉爆炸过程的实验研究   总被引:1,自引:0,他引:1  
铝粉的燃烧与爆轰性能是粉尘爆炸领域研究的热点.利用长29.6m,内径199mm,配有40套喷粉扬尘系统的水平爆轰管,在40J电火花点火条件下,实现了悬浮铝粉-空气混和物火焰加速、爆燃、爆轰及其转捩过程,测得了爆炸波传播过程中的压力信号,并且观察到了爆轰波的稳定传播现象.实验结果表明,当铝粉浓度为300 g/m3时,在距离点火端10.15m(长径比L/D=51)处发生了DDT,测得的爆轰波传播过程中管内的最大爆速为1840m/s,最大峰值超压为10.5MPa.铝粉尘爆炸波在爆轰管内的传播过程可分为爆燃段、爆燃转爆轰(DDT)、爆轰增强以及稳态爆轰四个阶段.  相似文献   

3.
2021-08期封面     
铝粉反应模型是对悬浮铝粉尘气-固两相爆轰进行数值模拟研究的关键。通过考虑铝粉燃烧产物氧化铝(Al2O3)在高温下的分解吸热反应,改进了铝粉的扩散燃烧模型。将该模型嵌入到三维的气-固两相爆轰数值计算程序中,分别对铝粉/空气混合物以及铝粉/氧气混合物的爆轰进行了数值模拟,计算得到的稳定爆轰波速度与实验结果、文献值均吻合较好,误差小于5.5%,表明改进的铝粉反应模型适用于不同氧化气体氛围中铝粉尘爆轰的模拟计算。此外,对两相爆轰参数及爆轰流场的物理量分布进行分析,获得了铝粉反应模型对爆轰波结构的影响规律。  相似文献   

4.
通过CE/SE方法模拟了空气中炸药-铝粉尘的两相爆轰过程, 研究了双粉尘爆轰过程中粒子不同密度对爆轰波速度、压力的影响, 得到密度与波速、爆压间的线性关系。模拟得到悬浮粉尘在复杂通道中的爆轰波传播过程, 研究了双粉尘爆轰的流场演化过程, 选取流场中的一些点对该处流场的压力及温度随时间的变化进行重点研究, 对比了单铝粉尘在同种条件下的爆轰过程, 发现双粉尘爆轰明显提高了爆轰波波速和流场的压力及温度。模拟结果表明CE/SE方法可以成功模拟双粉尘的爆轰过程, 可为多粉尘爆轰的研究提供参考。  相似文献   

5.
许厚谦 《爆炸与冲击》1994,14(4):289-297
建立了用于模拟入射激波后可燃粉尘颗粒点火的一维非定常两相化学反应流模型,该模型考虑了气固两相间的相互作用、粉尘颗粒的加速、加热和化学反应。粉尘颗粒着火前的化学反应用发生在颗粒外表面和内孔表面的非均相反应描述,颗粒内部的温度变化用一含有化学反应源项的非稳态热传导方程来描述,以颗粒外表面温度的突跃上升作为可燃粉尘颗粒点燃的着火条件。我们用该模型和PSIC方法,对由中等强度激波从纯气相传入煤粉-氧气混合物而引起的非定常两相流动现象,包括气固两相间的相互作用、粉尘颗粒的加速、加热以及点火过程进行了数值研究,计算了对应于不同载荷比、马赫数为4~5的入射激波后煤尘颗粒的点火延迟时间,分析了由于可燃粉尘颗粒的存在,入射激波及波后气固两相流动参数的变化规律。数值计算结果与实验数据符合较好。文中建立的模型和所用的基于PSIC算法的数值方法,用最自然的方式描述气固两相流动,即用连续流模型(欧拉方程)描述输运相(气相)的流动,用轨道颗粒模型(拉格朗日方程)描述分散相(颗粒相)的运动。用这种方法模拟含尘介质中激波后颗粒的点火是很有效的,它可以清楚地确定哪一个颗粒群最先着火,它的初始位置以及在整个点火延迟时间内  相似文献   

6.
混合爆轰现象既包含气相反应又包含两相反应,具有复杂性和多样性.爆轰推进技术在新领域的突破性应用与发展,依赖对爆轰现象的深刻认识.文章采用卧式爆轰管开展铝粉/氢气/空气混合爆轰试验,将μm和nm量级的球形铝粉与当量比的氢气和空气通过扬尘充分混合,在长13 m和直径224 mm的管内直接起爆混合物.试验中观测到不同种类的混合爆轰波,包括双波面和单波面结构.通过对爆轰燃气中铝粉点火燃烧特性的分析,阐明了两相反应对铝粉/氢气/空气混合爆轰波结构的直接影响.粒径100 nm和1μm时,混合爆轰呈现单波面结构,对比气相爆轰爆速和压力峰值都有增加,铝粉点火释热开始于声速面之前.粒径20μm和40μm铝粉点火较慢,混合爆轰呈现出双波面结构,气相反应释热支持第一道波,而铝粉燃烧支持第二道波.粒径10μm时,测得爆轰波压力曲线是单波峰,峰值压力有大幅提高,但是爆速并没有增加.其本质是两波面距离很近的双波面结构,由于传感器空间辨识能力的不足而无法在压力曲线中区分.混合爆轰试验结果充分解释了铝粉/氢气/空气混合爆轰现象,反映了铝粉在复杂条件下的燃烧特性,并且明确了铝粉的点火燃烧特性对混合爆轰现象的影响机理.  相似文献   

7.
为探究煤油液滴不同初始直径对气液两相旋转爆轰发动机流场的影响,假设初始注入的煤油液滴具有均匀直径,考虑雾化破碎、蒸发等过程,建立了非定常两相爆轰的Eulerian-Lagrangian模型,进行了液态煤油/高温空气爆轰的非预混二维数值模拟。结果表明:在初始液滴直径为1~70μm的工况范围,燃烧室内均形成了单个稳定传播的旋转爆轰波;全局当量比为1时,爆轰波前的空气区域大于液滴煤油的蒸气区域,导致波前燃料空气混合不均匀,波前均存在富油区和贫油区,两相速度差导致分离出的空气形成低温条带;当煤油液滴的初始直径较小时,波前的反应物混合过程主要受蒸发的影响,爆轰波可稳定传播;当直径减小至1μm时,煤油液滴在入口处即蒸发,旋转爆轰波表现为气相传播的特性,爆轰波结构平整;当煤油液滴的初始直径较大时,波前的反应物混合过程主要受液滴破碎的影响;对于相同的燃料质量流量,在不同初始煤油液滴直径工况下,煤油液滴最大的停留时间均占爆轰波传播时间尺度的80%以上;爆轰波前燃料预蒸发为气相的占比越高,爆轰波的传播速度越高;初始液滴直径为10~70μm的工况范围内,爆轰波的速度随初始直径的增大先升高后降低。  相似文献   

8.
采用瞬态阴影技术及红外光电传感器技术实验研究了沉积玉米粉的激波点火过程,并对此进行了理论分析。实验与理论分析结果表明,激波掠射沉积粉尘床后,粉尘颗粒先上扬到一定高度后才点火,颗粒的点火延迟时间与激波波前马赫数、气相氧气含量等因素有关。另外,沉积粉尘的激波点火延迟时间比相同条件下的悬浮粉尘激波点火延迟时间长。  相似文献   

9.
激波诱导的燃烧粉尘云边界层的结构   总被引:7,自引:0,他引:7  
足够强的激波扫过铺有可燃粉尘的界面时,波后形成燃烧的粉尘云边界层。为揭示其内部结构,本文对该现象进行了实验和理论两个方面的研究。理论计算表明燃烧粉云边界层可分为三个区域:诱导区、反应区和扩散区,诱导区的粉尘浓度最高,计算获得的粉尘云轮廓和点火延迟与实验结果基本吻合.  相似文献   

10.
铝粉/空气二维黏性两相爆轰的数值模拟   总被引:1,自引:0,他引:1  
为了深入研究爆轰波形成和传播的机理与特性,建立了管内铝粉/空气二维黏性两相爆轰过程的数学模型,采用守恒元与求解元方法进行数值计算,并对其物理参数的分布进行了分析。结果表明:管内燃烧转爆轰的初期,压力沿径向变化明显,与壁面碰撞有明显的反射波;燃烧转爆轰的中后期,压力沿轴向变化明显,但径向效应仍不能忽视,碰撞形成的反射波对最终稳定爆轰波的形成影响较大。研究结果同时表明:不仅铝粉颗粒初始半径对爆轰波的形成与传播有一定的影响;而且气体的黏性作用在研究爆轰管内近壁面处流场时不容忽视。研究结果有利于进一步揭示铝粉燃烧转爆轰的机理。  相似文献   

11.
为了获得含铝炸药爆轰反应区附近铝粉的反应情况,对两种RDX/Al炸药和一种RDX/LiF炸药的爆轰波结构进行了测量。实验过程中,利用火炮加载产生一维平面波,通过光子多普勒测速仪测量炸药/LiF窗口的界面粒子速度。结果表明:含铝炸药爆轰波的结构与理想炸药的差异较大,其界面粒子速度曲线没有明显的拐点;反应初期,由于气相产物与添加物之间温度的非平衡性,RDX/Al界面的粒子速度低于RDX/LiF炸药的;随后,由于铝粉反应放能,RDX/Al界面的粒子速度高于RDX/LiF炸药的;微米尺度铝粉在CJ面前几乎不发生反应;2、10 μm等两种粒度铝粉的反应延滞时间小于0.8 μs;在本文中,两种粒度铝粉的反应度为16%~31%。  相似文献   

12.
粉尘火焰加速现象的实验研究   总被引:5,自引:1,他引:4  
浦以康  胡山 《爆炸与冲击》1995,15(2):97-106
粉尘火焰的发生、加速及由爆燃向爆轰转捩的机理是个至今尚未弄清的问题。需要解决的技术关键之一是在实验室实现弱点火条件下的粉尘火焰加速直至达到爆轰状态。着手发展了一种球形喷粉扬尘装置,令产生的扬尘湍流在水平实验管中形成空间均匀分布和维持秒级悬浮的粉尘云状态。采用以上扬尘装置的水平实验管,在6g黑火药的六点平面点火条件下获得了微细铝粉火焰经5m长的传播过程加速至1000m/s的实验结果。给出了扬尘湍流强度、粉尘粒度与浓度、点火能量及方式等因素对粉尘火焰加速过程中所起作用,及变截面效应(由小变大)对粉尘火焰减速的影响。  相似文献   

13.
A new pneumatic dispersion system for obtaining a good quality uniform dust suspension in a horizontal dust combustion tube was developed. The effect of three different dispersion techniques on self-sustained dust flame acceleration in such a combustion tube was examined. The importance of the dispersion quality in the test tube for maintaining a self-sustained dust flame acceleration was demonstrated. A combustion tube for studies of flame acceleration in fine aluminum dust-air mixture and its transition to detonation under industrial ignition conditions was constructed in the course of the present study. It consists mainly of an initiation section and a test section. The initiation section must be equipped in a well-developed dispersion system for creating a good dispersion condition in the test tube. The length of this section is 3 meters. The test tube requires only to distribute uniformly the dust over the bottom of the tube prior to the experiment. The aluminum dust spherical in shape with 6 μm in diameter was used for tests. Experimental results demonstrated that the increase in flame velocity is roughly linear through the entire length of the test tube. The highest flame propagation velocity in fine aluminum dust-air mixture approaches some 1200m/s at a distance of 4.8m from the ignition plane.  相似文献   

14.
采用20 L近球形粉尘爆炸实验系统,探究微米级铝粉在不同点火延迟时间、粉尘粒径及粉尘浓度下的爆炸特性规律。结果表明:当点火延迟时间在20~120 ms范围内,铝粉最大爆炸压力和最大爆炸压力上升速率先增大后减小,随铝粉粒径增大,最佳点火延迟时间增大;在任一点火延迟时间下,粒径大于8.12 μm的铝粉最大爆炸压力随粉尘粒径的减小呈增大的变化趋势;粒径大于8.12 μm的铝粉,在80~440 g/m3粉尘浓度范围内,铝粉最大爆炸压力和最大爆炸压力上升速率先增大后减小,且铝粉粒径越小,对应的最猛烈爆炸粉尘浓度越低。  相似文献   

15.
This paper summarizes the studies of DDT and stable detonation waves in dust-air mixtures at the Stosswellenlabor of RWTH Aachen. The DDT process and propagation mechanism for stable heterogeneous dust detonations in air are essentially the same as in the oxygen environment studied previously. The dust DDT process in tubes is composed of a reaction compression stage followed by a reaction shock stage as the pre-detonation process. The transverse waves that couple the shock wave and the chemical energy release are responsible for the propagation of a stable dust-air detonation. However, the transverse wave spacing of dust-air mixtures is much larger. Therefore, DDT and propagation of a stable detonation in most industrial and agricultural, combustible dust-air mixtures require a tube that has a large diameter between 0.1 m and 1 m and a sufficient length-diameter ratio beyond 100, when an appropriately strong initiation energy is used. Two dust detonation tubes, 0.14 m and 0.3 m in diameter, were used for observation of the above-mentioned results in cornstarch, anthraquinone and aluminum dust suspended in air. Smoked-foil technique was also used to measure the cellular structure of dust detonations in the 0.3 m detonation tube. Received 11 February 2000 / Accepted 1 August 2000  相似文献   

16.
基于圆筒实验的RDX/Al炸药反应进程   总被引:2,自引:0,他引:2  
对RDX炸药和2种铝粉质量分数分别为15%、30%的RDX基含铝炸药进行?50mm圆筒实验,研究铝粉含量对炸药做功能力的影响,根据格尼公式分析铝粉与爆轰产物的反应进程。结果表明:在圆筒实验记录的时间范围内,铝粉质量分数为15%的含铝炸药做功能力最强,RDX炸药次之,铝粉质量分数为30%炸药做功能力最弱;34μs时刻,铝粉质量分数为15%的炸药,铝粉的反应度为0.49,而铝粉质量分数为30%炸药铝粉的反应度仅为0.21,含铝炸药中铝粉的反应时间在50~200μs之间。  相似文献   

17.
An empirical model for the ignition of aluminum particle clouds is developed and applied to the study of particle ignition and combustion behavior resulting from explosive blast waves. This model incorporates both particle ignition time delay as well as cloud concentration effects on ignition. The total mass of aluminum that burns is found to depend on the model, with shorter ignition delay times resulting in increased burning of the cloud. After the Al particles ignite, a competition for oxidizer between the booster detonation products and Al ensues. A new mass-averaged ignition parameter is defined and is observed to serve as a useful parameter to compare cloud ignition behavior. Investigation of this variable reveals that both peak ignition as well as the time required to attain peak ignition, are sensitive to the model parameters. The peak degree of dissociation in the fireball is about 19 % and the associated energy can play a significant role on the dynamics of the problem. The peak degree of ionization is about 2.9 % and the energy associated with this is much lower than the other controlling factors. Overall, this study demonstrates that the new ignition model developed captures effects not included in other combustion models for the investigation of shock-induced ignition of aluminum particle clouds.  相似文献   

18.
The effect of initial pressure on aluminum particles–air detonation was experimentally investigated in a 13 m long, 80 mm diameter tube for 100 nm and 2 μm spherical particles. While the 100 nm Al–air detonation propagates at 1 atm initial pressure in the tube, transition to the 2 μm aluminum–air detonation occurs only when the initial pressure is increased to 2.5 atm. The detonation wave manifests itself in a spinning wave structure. An increase in initial pressure increases the detonation sensitivity and reduces the detonation transition distance. Global analysis suggests that the tube diameter for single-head spinning detonation or characteristic detonation cell size would be proportional to (d 0: aluminum particle size, p 0: initial pressure). Its application to the experimental data results in m ~ O(1) and n ~ O(1) for 1 to 2 μm aluminum–air detonation, thus indicating a strong dependence on initial pressure and gas-phase kinetics for the aluminum reaction mechanism in detonation. Hence, combustion models based on the fuel droplet diffusion theory may not be adequate in describing micrometric aluminum–air detonation initiation, transition and propagation. For 2 μm aluminum–air mixtures at 2 atm initial pressure and below, experiments show a transition to a “dust quasi-detonation” that propagates quasi-steadily with a shock velocity deficit nearly 40% with respect to the theoretical C–J detonation value. The dust quasi- detonation wave can propagate in a tube with a diameter less than 0.4–0.5 times the diameter required for a spinning detonation wave.  相似文献   

19.
In the present paper, combustion of dust clouds from the discrete point heat source method has been addressed. Time-place temperature profile generated by single particle burning has been obtained to study the dust combustion. The summation of the temperature profiles of burned and burning particles predict the temperature in the preheating zone so that the ignition time of layer in flame front can be determined. Consequently the flame propagating speed was obtained based on the dust concentration corresponding to particles spacing and particle diameter. This method has been validated with aluminum dust cloud combustion. Decrease in the dust concentration leads to the lean limit of dust combustion. Increase in particles diameter or reduction in the dust concentration causes higher lean limit and also reduction in the flame propagating speed. Adding the ignition energy as igniter to this system, provides the path to study the effects of ignition energy in the dust combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号