首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Within continuum dislocation theory the plastic deformation of bicrystals under a mixed deformation of plane constrained uniaxial extension and shear is investigated with regard to the nucleation of dislocations and the dislocation pile-up near the phase boundaries of a model bicrystal with one active slip system within each single crystal. For plane uniaxial extension, we present a closed-form analytical solution for the evolution of the plastic distortion and of the dislocation network in the case of symmetric slip planes (i.e. for twins), which exhibits an energetic as well as a dissipative threshold for the dislocation nucleation. The general solution for non-symmetric slip systems is obtained numerically. For a combined deformation of extension and shear, we analyze the possibility of linearly superposing results obtained for both loading cases independently. All solutions presented in this paper also display the Bauschinger effect of translational work hardening and a size effect typical to problems of crystal plasticity.  相似文献   

2.
Numerical simulations and experimental results of nanoindentation on single crystal copper in three crystallographic orientations [(1 0 0), (0 1 1) and (1 1 1)] using a spherical indenter (3.4 μm radius) were reported. The simulations were conducted using a commercial finite element code (ABAQUS) with a user-defined subroutine (VUMAT) that incorporates large deformation crystal plasticity constitutive model. This model can take full account of the crystallographic slip as well as the orientation effects during nanoindentation. Distributions of the out-of-plane displacements and shear stresses as well as shear strains were obtained for indentation depths of up to 310 nm. The experimental studies were conducted using an MTS Nano Indenter (XP) system from which the load–displacement relationships were obtained while the surface topography as well as the surface profile along a line scan of indents were obtained using a Digital Instruments (Dimension 3100) atomic force microscope (AFM). The top views of the indent pile-up patterns under the spherical indenter show two-fold, three-fold, and four-fold symmetries for the (0 1 1), (1 1 1), and (1 0 0) orientations, respectively. Attempt was made to relate the anisotropic nature of the surface topographies around the indents in different crystallographic orientations of the single crystal copper specimens with the active slip systems and local texture variations. A reasonably good agreement had been obtained on several aspects of nanoindentation between the experimental and numerical results reported in this investigation as well as similar results reported in the literature. Thus, material properties of single crystal copper can be determined based on an appropriate numerical modeling of the nanoindentation on three crystallographic orientations.  相似文献   

3.
The elastic/crystalline viscoplastic constitutive equation, based on a newly proposed hardening-softening evolution equation, is introduced into the dynamic-explicit finite element code “Itas-Dynamic.” In the softening evolution equation, the effective distance and the angle between each slip system of a crystal are introduced to elucidate the interaction between the slip systems, which causes a decrease of dislocation density. The polycrystal sheet is modeled by Voronoi polygons, which correspond to the crystal grains; and by the selected orientations, which can relate to the texture, they are assigned to the integration points of the finite elements. We propose a direct crystal orientation assignment method, which means that each integration point of finite element has an assigned orientation, and its orientation can be rotated independently. Therefore, this inhomogeneous polycrystal model can consider the plastic induced texture development and subsequent anisotropy evolution. The parameters of the constitutive equation are identified by uni-axial tension tests carried out on single crystal sheets. Numerical results obtained for sheet tensions are compared with experimental ones to confirm the validity of our finite element code. Further, we investigate the following subjects: (1) how the initial orientation of single crystal affects slip band formation and strain localization; (2) how the grain size and particular orientations of the grain affect the strain localization in case of a polycrystal sheet. It is confirmed that the orientation of a single crystal can be related to the primary slip system and the deformation induced activation of that system, which in turn can be related to the slip band formation of the single crystal sheet. Further, in case of a polycrystal sheet, the larger the grain size, the more the strain localizes at a specific crystal, which has the particular orientation. It is confirmed through comparisons with experiments that our finite element code can predict the localization of strain in sheets and consequently can estimate the formability of sheet metals.  相似文献   

4.
单晶镍基合金具有优异的耐高温、高强、高韧等性能, 这些力学性能受制造过程引入的次级取向和冷却孔的影响. 已有研究大多关注单孔薄板的变形机理和力学性能, 而工程中应用的往往是多孔薄板, 当前亟需阐明多孔的塑性滑移带变形机理、次级取向效应以及冷却孔引起的应变梯度效应. 文章采用基于位错机制的非局部晶体塑性本构模型对含冷却孔镍基单晶薄板的单拉变形进行了数值模拟. 此模型基于塑性滑移梯度与几何必需位错的关系引入了位错流动项, 因此可有效刻画非均匀变形过程中的应变梯度效应. 为了全面揭示含孔镍基薄板的次级取向效应, 系统研究了[100]和[110]取向(两种次级取向)下镍基薄板的单拉变形行为, 并重点探究了在两种次级取向下冷却孔数量对薄板塑性行为的影响. 此外, 还分析了镍基合金板变形过程中各个滑移系上分切应力变化、主导滑移系开动以及几何必需位错密度的演化过程, 并讨论了塑性滑移量及其分布特征对不同次级取向镍基合金板强度的影响. 研究表明, 单孔和多孔的[110]薄板抗拉强度均低于[100]薄板, 多孔薄板的塑性变形过程比单孔薄板更为复杂且受次级取向影响更大, 并且发生滑移梯度位置主要位于冷却孔附近以及塑性滑移带区域. 研究结果可为工程中镍基合金的设计和服役提供理论指导.   相似文献   

5.
Results from experiments conducted on copper FCC single crystals are reported. Two symmetric crystallographic orientations and four nonsymmetric crystallographic orientations were tested. The slip line fields that form near a pre-existing notch in these specimens were observed. The changes in these patterns as the orientation of the notch in the crystal is rotated in an {101} plane are discussed. Sectors of similar slip line patterns are identified and the type of boundaries between these sectors are discussed. A type of sector boundary called mixed kink is identified. Specimen orientations that differ by 90° are found to have different slip line patterns, contrary to the predictions of perfectly plastic slip line theory. The locations of the first slip lines to form are compared to the predictions obtained using anisotropic linear elastic stress field solutions and the initial plane-strain yield surfaces. It is found that comparison of these surface slip line fields to plane strain crack tip solutions in the annular region between 350 and is justified. The differences in anisotropic elastic solutions for orientations that are 90° apart explain the lack of agreement with perfectly plastic slip line theory.  相似文献   

6.
7.
Deformation micromechanisms of a Ti–6Al–4V alloy under fatigue loading at room temperature are studied using a three-dimensional crystal plasticity constitutive model. The model employs a minimum set of fitting parameters based on experimental data for Ti–6Al–4V. Single slip is strongly favored through a softening law that affects mainly the driving force for slip on the first activated slip system. Cyclic deformation behavior at the macroscopic scale and at the local scale of grains is analyzed through the simulation of 20 cycles of fatigue on a polycrystalline structure of 900 randomly oriented grains. The progressive activation of slip (basal, prismatic, and pyramidal) is analyzed and compared to experimental observations.  相似文献   

8.
This paper develops a finite-deformation, gradient theory of single crystal plasticity. The theory is based on a system of microscopic force balances, one balance for each slip system, derived from the principle of virtual power, and a mechanical version of the second law that includes, via the microscopic forces, work performed during plastic flow. When combined with thermodynamically consistent constitutive relations the microscopic force balances become flow rules for the individual slip systems. Because these flow rules are in the form of partial differential equations requiring boundary conditions, they are nonlocal. The chief new ingredient in the theory is a free energy dependent on (geometrically necessary) edge and screw dislocation-densities as introduced in Gurtin [Gurtin, 2006. The Burgers vector and the flow of screw and edge dislocations in finite-deformation plasticity. Journal of Mechanics and Physics of Solids 54, 1882].  相似文献   

9.
This paper describes a numerical, hierarchical multiscale modeling methodology involving two distinct bridges over three different length scales that predicts the work hardening of face centered cubic crystals in the absence of physical experiments. This methodology builds a clear bridging approach connecting nano-, micro- and meso-scales. In this methodology, molecular dynamics simulations (nanoscale) are performed to generate mobilities for dislocations. A discrete dislocations numerical tool (microscale) then uses the mobility data obtained from the molecular dynamics simulations to determine the work hardening. The second bridge occurs as the material parameters in a slip system hardening law employed in crystal plasticity models (mesoscale) are determined by the dislocation dynamics simulation results. The material parameters are computed using a correlation procedure based on both the functional form of the hardening law and the internal elastic stress/plastic shear strain fields computed from discrete dislocations. This multiscale bridging methodology was validated by using a crystal plasticity model to predict the mechanical response of an aluminum single crystal deformed under uniaxial compressive loading along the [4 2 1] direction. The computed strain-stress response agrees well with the experimental data.  相似文献   

10.
A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically necessary dislocations (GNDs) are incorporated into the phenomenological continuum theory of crystal plasticity. Consequently, the resulting boundary value problem accommodates, in addition to the ordinary stress equilibrium condition, a condition which sets the additional nodal degrees of freedom, the edge and screw GND densities, proportional (in a weak sense) to the gradients of crystalline slip. Next to this direct coupling between microstructural dislocation evolutions and macroscopic gradients of plastic slip, another characteristic of the presented crystal plasticity model is the incorporation of the GND-effect, which leads to an essentially different constitutive behaviour than the statistically stored dislocation (SSD) densities. The GNDs, by their geometrical nature of locally similar signs, are expected to influence the plastic flow through a non-local back-stress measure, counteracting the resolved shear stress on the slip systems in the undeformed situation and providing a kinematic hardening contribution. Furthermore, the interactions between both SSD and GND densities are subject to the formation of slip system obstacle densities and accompanying hardening, accountable for slip resistance. As an example problem and without loss of generality, the model is applied to predict the formation of boundary layers and the accompanying size effect of a constrained strip under simple shear deformation, for symmetric double-slip conditions.  相似文献   

11.
Within continuum dislocation theory the plane constrained uniaxial extension of a single crystal strip deforming in single or double slip is analyzed. For the single and symmetric double slip, the closed-form analytical solutions are found which exhibits the energetic and dissipative thresholds for dislocation nucleation, the Bauschinger translational work hardening, and the size effect. Numerical solutions for the non-symmetric double slip are obtained by finite element procedures.  相似文献   

12.
A rate dependent crystal plasticity model for the α/β Ti–Al alloy Ti–6Al–4V with duplex microstructure is developed and presented herein. Duplex Ti–6Al–4V is a dual-phase alloy consisting of an hcp structured matrix primary α-phase and secondary lamellar α + β domains that are composed of alternating layers of secondary α laths and bcc structured residual β laths. The model accounts for distinct three-dimensional slip geometry for each phase, anisotropic and length scale dependent slip system strengths, the non-planar dislocation core structure of prismatic screw dislocations in the primary α-phase, and crystallographic texture. The model is implemented in the general purpose finite element code (ABAQUS, 2005. Ver 6.5, Hibbitt, Karlsson, and Sorensen, Inc., Pawtucket, RI) via a UMAT subroutine.  相似文献   

13.
We compare experimental measurements of inhomogeneous plastic deformation in a Ni bicrystal with crystal plasticity simulations. Polychromatic X-ray microdiffraction, orientation imaging microscopy and scanning electron microscopy, were used to characterize the geometrically necessary dislocation distribution of the bicrystal after uniaxial tensile deformation. Changes in the local crystallographic orientations within the sample reflect its plastic response during the tensile test. Elastic strain in both grains increases near the grain boundary. Finite element simulations were used to understand the influence of initial grain orientation and structural inhomogeneities on the geometrically necessary dislocations arrangement and distribution and to understand the underlying materials physics.  相似文献   

14.
A strain gradient dependent crystal plasticity approach is used to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. Material points are considered as aggregates of grains, subdivided into several fictitious grain fractions: a single crystal volume element stands for the grain interior whereas grain boundaries are represented by bi-crystal volume elements, each having the crystallographic lattice orientations of its adjacent crystals. A relaxed Taylor-like interaction law is used for the transition from the local to the global scale. It is relaxed with respect to the bi-crystals, providing compatibility and stress equilibrium at their internal interface. During loading, the bi-crystal boundaries deform dissimilar to the associated grain interior. Arising from this heterogeneity, a geometrically necessary dislocation (GND) density can be computed, which is required to restore compatibility of the crystallographic lattice. This effect provides a physically based method to account for the additional hardening as introduced by the GNDs, the magnitude of which is related to the grain size. Hence, a scale-dependent response is obtained, for which the numerical simulations predict a mechanical behaviour corresponding to the Hall-Petch effect. Compared to a full-scale finite element model reported in the literature, the present polycrystalline crystal plasticity model is of equal quality yet much more efficient from a computational point of view for simulating uniaxial tension experiments with various grain sizes.  相似文献   

15.
In this paper a crystal plasticity-based crack nucleation model is developed for polycrystalline microstructures undergoing cyclic dwell loading. The fatigue crack nucleation model is developed for dual-phase titanium alloys admitting room temperature creep phenomenon. It is a non-local model that accounts for the cumulative effect of slip on multiple slip systems, and involves evolving mixed-mode stresses in the grain along with dislocation pileups in contiguous grains. Rate dependent, highly anisotropic behavior causes significant localized stress concentration that increases with loading cycles. The crystal plasticity finite element (CPFE) model uses rate and size-dependent anisotropic elasto-crystal plasticity constitutive model to account for these effects. Stress rise in the hard grain is a consequence of time-dependent load shedding in adjacent soft grains, and is the main cause of crack nucleation in the polycrystalline titanium microstructure. CPFE simulation results are post-processed to provide inputs to the crack nucleation model. The nucleation model is calibrated and satisfactorily validated using data available from acoustic microscopy experiments for monitoring crack evolution in dwell fatigue experiments.  相似文献   

16.
We have been developing the theory of mechanism-based strain gradient plasticity (MSG) to model size-dependent plastic deformation at micron and submicron length scales. The core idea has been to incorporate the concept of geometrically necessary dislocations into the continuum plastic constitutive laws via the Taylor hardening relation. Here we extend this effort to develop a mechanism-based strain gradient theory of crystal plasticity. In this theory, an effective density of geometrically necessary dislocations for a specific slip plane is introduced via a continuum analog of the Peach-Koehler force in dislocation theory and is incorporated into the plastic constitutive laws via the Taylor relation.  相似文献   

17.
单晶体塑性滑移有限变形下的应力计算   总被引:6,自引:0,他引:6  
张克实  张光  冯露 《力学学报》2002,34(4):636-644
为了探讨和发展单晶金属材料的非弹性有限变形分析方法,提出一种单晶体各向异性弹塑性分析的计算格式.该方法是一种以初始构形为变形计算参考构形的描述方法,它对单晶体塑性构形的演化用增量计算以跟随加载路径,而在应力计算时在卸载构形的基础上用Hencky对数弹性应变来计算总量的应力以保证计算的稳定和收敛;通过求解满足瞬时屈服条件和应力与弹性应变关系的广义胡克定律的非线性方程组来搜索激活滑移系.  相似文献   

18.
The plastic zone of the growing mode III crack in an elastic perfectly plastic solid consists of two sectors in contact with each other. The sector closer to the crack plane, first studied analytically by Chitaley and McClintock (CM), consists of a fan of straight maximum shear stress trajectories that are focused on the crack tip. The other sector, first analyzed numerically by Dean and Hutchinson (DH), is a ‘radial’ fan of straight lines that are not focused at the crack tip or at another common point. In this paper it is shown with use of the dislocation density field that the need that the stress magnitude in the plastic wake be below the yield stress requires the existence of an unfocused fan in the DH sector. It appears unlikely that this result can be obtained without explicit use of dislocations.  相似文献   

19.
20.
Single crystal plasticity based on a representative characteristic length is proposed and introduced into a homogenization approach based on finite element analyses, which are applied to characterization of distinctive yielding behaviors of polycrystalline metals, yield-point elongation, and grain size strengthening. The computational manner for an implicit stress update is derived with the framework of a standard multi-surface plasticity at finite strain, where the evolution of the characteristic lengths are numerically converted from the accumulated slips of all of slip systems by exploiting the mathematical feature of the characteristic length as the intermediate function of the plastic internal variables. Furthermore, a constitutive model for a single crystal reproduces the stress–strain curve divided into three parts. Using two-scale finite element analysis, the macroscopic stress–strain response with yield-point elongation under a situation of low dislocation density is reproduced. Finally, the grain size effect on the yield strength is analyzed with modeling of the grain boundary in the context of the proposed constitutive model and is discussed from both macroscopic and microscopic views.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号