首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
复合材料叠层梁和金属梁的固有振动特性   总被引:3,自引:0,他引:3  
对根据三种梁理论得到的金属梁和复合材料叠层梁的固有振动特性进行了对比性的研究对常用的三种梁理论在弹性碰撞分析中的应用进行了分析和比较  相似文献   

2.
李红云  王清  刘正兴 《力学季刊》2002,23(2):141-147
利用压电材料固有的正,逆压电效应可以对结构变形和振动进行控制。与外加电场与极化方向平行于板厚度的压电材料的拉伸作动机制相比,外加电场与极化方向垂直的压电材料的剪切作动机制可以在作动器内产生较小的应力,从而降低作动器边界产生分层破坏的危险。本文对于压电材料的剪切作动机制进行研究,应用三阶剪切变形理论建立带剪切型压电激励器的智能层合板模型。采用哈密顿原理导出带剪切型压电激励器的层合板的控制方程。采用空间法得到了各种边界条件组合条件下板的解析解。数值算例对一三层板采用高阶和一阶剪切变形理论进行计算,结果表明两种理论所得的变形曲线很相似。但对于厚度剪切型激励器而言,由于激励器是引起板的剪切变形,而高阶剪切变形理论比一阶剪切变形理论能更好地反映结构的剪切应变能,因此高阶剪切变形理论可以提供板变形的更为精确的解。因此,对于厚度剪切型激励器,剪切变形理论的选取对于板变形结果的好坏有重要的作用。  相似文献   

3.
A new theory, which involves only two unknown functions and yet takes into account shear deformations, is presented for orthotropic plate analysis. Unlike any other theory, the theory presented gives rise to only two governing equations, which are completely uncoupled for static analysis, and are only inertially coupled (i.e., no elastic coupling at all) for dynamic analysis. Number of unknown functions involved is only two, as against three in case of simple shear deformation theories of Mindlin and Reissner. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Well studied examples, available in literature, are solved to validate the theory. The results obtained for plate with various thickness ratios using the theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories having more number of unknown functions.  相似文献   

4.
In this research, thermal buckling of circular plates compose of functionally graded material (FGM) is considered. Equilibrium and stability equations of a FGM circular plate under thermal loads are derived, based on the higher order shear deformation plate theory (3rd order plate theory). Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the variational method, the system of fundamental partial differential equations is established. A buckling analysis of a functionally graded circular plate (FGCP) under various types of thermal loads is carried out and the result are given in closed-form solutions. The results are compared with the critical buckling temperature obtained for FGCP based on first order (1st order plate theory) and classical plate theory (0 order plate theory) given in the literature. The study concludes that higher order shear deformation theory accurately predicts the behavior of FGCP, whereas the first order and classical plate theory overestimates buckling temperature.  相似文献   

5.
The goal of this study is to investigate the vibration characteristics of a stepped laminated composite Timoshenko beam. Based on the first order shear deformation theory, flexural rigidity and transverse shearing rigidity of a laminated beam are determined. In order to account for the effect of shear deformation and rotary inertia of the stepped beam, Timoshenko beam theory is then used to deduce the frequency function. Graphs of the natural frequencies and mode shapes of a T300/970 laminated stepped beam are given, in order to illustrate the influence of step location parameter exerts on the dynamic behavior of the beam.  相似文献   

6.
吴晓 《力学季刊》2023,44(1):210-217
利用高阶剪切变形理论研究了双模量梁的弯曲变形问题,推导出了双模量梁的挠曲线方程及弯曲正应力公式.讨论分析了翘曲函数的指数n对挠度、正应力的影响.研究结果表明:拉压弹性模量的差异对梁的弯曲应力有较大影响.把高阶剪切变形理论的计算结果与弹性理论计算结果进行比较,可知该方法计算精度非常高.  相似文献   

7.
Timoshenko梁通过假设截面的剪切刚度和附加平均剪切转角变形的方式来近似修正初等梁中未考虑剪切变形能的问题,这与梁剪应力沿梁高变化的实际不符。本文基于材料力学剪应力计算式和相应的剪切变形理论,从剪切变形与梁的位移关系入手,导出矩形梁考虑剪切变形时的纵向位移沿梁高方向的函数关系式,证明该位移可分解为纯弯曲引起的位移和剪力引起的剪力滞翘曲位移之和。应用剪力滞广义坐标与广义力的概念,基于能量变分原理得到等截面梁剪力滞控制微分方程组及其通解形式。对均布荷载作用下矩形简支梁的算例分析表明,本文算法与弹性力学精确解对比,两者的应力和挠度剪力滞系数求解结果非常接近,本文算法有足够的精度,且比弹性力学简单。  相似文献   

8.
脱层梁屈曲的高阶剪切理论   总被引:5,自引:0,他引:5  
脱层的存在将会大大降低层合结构的屈曲载荷。该文将含任意位置脱层的两端固支梁分成多段子层,用厚度的三次多项式模拟脱层梁屈曲时子层的轴向位移,利用变分原理和欧拉方程导出了脱层梁的屈曲方程和定解条件,并用状态空间方法进行求解。通过与一阶剪切理论和经典理论的比较,指出了它们各自的适用范围;考虑了脱层梁三种不同的屈曲模态。分析了脱层长度、深度、位置和材料的铺层方向对脱层梁屈曲载荷的影响;最后给出了多处简单脱层的屈曲分析。  相似文献   

9.
纳米夹杂复合材料的有效反平面剪切模量研究   总被引:1,自引:0,他引:1  
基于Gurtin-Murdoch表面/界面理论模型,利用复变函数方法,获得了考虑夹杂界面应力时夹杂/基体/等效介质模型的全场精确解,发展了能够预测纳米夹杂复合材料有效反平面剪切模量的广义自洽方法,给出了复合材料有效反平面剪切模量的封闭形式解。数值结果显示:当夹杂尺寸在纳米量级时,复合材料的有效反平面剪切模量具有尺度相关性,随着夹杂尺寸的增大,本文结果趋近于经典弹性理论的预测值;夹杂尺寸对于有效反平面剪切模量(本文结果)的影响范围要小于其对有效体积模量与剪切模量(各向同性材料)的影响范围;有效反平面剪切模量受夹杂的界面性能和夹杂刚度影响显著。  相似文献   

10.
以某型火炮身管设计为例,采用双剪统一强度理论对火炮身管的壁厚进行了设计。然而,在火炮身管强度计算中得出了如下结论:当身管外径平方与内径平方之比小于1+b时,若材料的其它参数不变,材料的压缩屈服极限越大,其所能承受内压的能力越差,b为双剪统一强度理论中的参数。这是有悖常理的。针对该现象本文考虑各主应力的正负取值情况,对库伦—莫尔理论和双剪统一强度理论的改进问题进行了探讨。并应用改进的双剪统一强度理论再次计算,得到了满意的结果。  相似文献   

11.
This paper addresses the buckling and post-buckling of laminated composite plates using higher order shear deformation theory associated with Green–Lagrange non-linear strain–displacement relationships. All higher order terms arising from nonlinear strain–displacement relations are included in the formulation. The present plate theory satisfies zero transverse shear strain conditions at the top and bottom surfaces of the plate in von Karman sense. A C0 isoparametric finite element is developed for the present nonlinear model.  相似文献   

12.
Song Xiang  Gui-wen Kang  Bin Xing 《Meccanica》2012,47(8):1913-1921
In the present paper, a nth-order shear deformation theory is used to perform the free vibration analysis of the isotropic plates. The present nth-order shear deformation theory satisfies the zero transverse shear stress boundary conditions on the top and bottom surface of the plate. Reddy??s third order theory can be considered as a special case of present nth-order theory (n=3). The governing equations and boundary conditions are derived by the principle of virtual work. The governing differential equations of the isotropic plates are solved by the meshless radial point collocation method based on the thin plate spline radial basis function. The effectiveness of the present theory is demonstrated by applying it to free vibration problem of the square and circular isotropic plate.  相似文献   

13.
Maximum shear stress theory, also called the ‘Third Strength Theory’, is a classical theory used to predict the failure of common metal, but it cannot be used directly to predict sheet metal failure due to anisotropy and the loading path. Therefore, this paper proposes a maximum shear stress calculating method, which has been named “shear failure criterion” for the purpose of this paper. In order to validate the shear failure criterion, a general program was developed, and two typical materials, steel, and aluminum alloy, were used to study the new shear failure criterion in this study. The two materials were modeled by advanced constitutive models, including Hill1948 and Yld2000-2d yield functions and several types of isotropic hardening models. Experimental validation has indicated the accuracy of predicted FLD using shear failure criterion, which is able to provide a new alternative method to numerically predict FLD.  相似文献   

14.
This work presents the highly accurate numerical calculation of the natural frequencies and buckling loads for thick elastic rectangular plates with various combinations of boundary conditions. The Reissener–Mindlin first order shear deformation plate theory and the higher order shear deformation plate theory of Reddy have been applied to the plate’s analysis. The governing equations and the boundary conditions are derived using the dynamic version of the principle of minimum of the total energy. The solution is obtained by the extended Kantorovich method. This approach is combined with the exact element method for the vibration and stability analysis of compressed members, which provides for the derivation of the exact dynamic stiffness matrix including the effect of in-plane and inertia forces. The large number of numerical examples demonstrates the applicability and versatility of the present method. The results obtained by both shear deformation theories are compared with those obtained by the classical thin plate’s theory and with published results. Many new results are given too.  相似文献   

15.
基于修正偶应力和高阶剪切理论建立了仅含有一个尺度参数的Reddy变截面微梁的自由振动模型,研究了变截面微梁自由振动问题的尺度效应和横向剪切变形对自振频率计算的影响。基于哈密顿原理推导了动力学方程与边界条件,并采用微分求积法求解了各种边界条件下的自振频率。算例结果表明,基于偶应力理论预测的变截面微梁的自振频率均大于经典梁理论的预测结果,即捕捉到了尺度效应。另外,梁的几何尺寸与尺度参数越接近,尺度效应就越明显,而梁的长细比越小,横向剪切变形对自振频率的影响就越明显。  相似文献   

16.
以能量变分原理为基础,综合考虑箱形梁满足应力自平衡的剪力滞、剪切变形和转动惯量等多重因素的影响,推导出箱梁的自由振动方程及自然边界条件。通过算例将本文解析计算结果与ANSYS有限元计算结果进行了比较。结果表明,两者计算结果吻合良好,论证了本文计算方法的正确。所得公式比以往箱形箱梁自振特性计算理论有一定发展,并得出了一些对工程设计有意义的结论;在剪力滞效应的作用下,箱形梁的固有频率减小幅度较大,不能忽略;剪力滞效应随频率阶次的升高而变大,随着跨宽比的减小而增大。  相似文献   

17.
Three non-linear finite element formulations for a composite shell are discussed. They are the simplified large rotation (SLR), the large displacement large rotation (LDLR), and the Jaumann analysis of general shells (JAGS). The SLR and the LDLR theories are based on total Lagrangian approach, and the JAGS is based on a co-rotational approach. Both the SLR and LDLR theories represent the in-plane strains exactly the same as Green's strain-displacement relations, whereas, only linear displacement terms are used to represent the transverse shear strain. However, a higher order kinematic through the thickness assumption is used in the SLR theory, which leads to parabolic transverse shear stress distribution compared to a first order kinematic through the thickness relationship used in the LDLR theory that leads to linear transverse shear stress distribution. Furthermore, the LDLR theory uses an Euler-like angle in the kinematics to account for the large displacement and rotation. The JAGS theory decomposes the deformation into stretches and rigid body rotations, where an orthogonal coordinate system translates and rotates with the deformed infinitesimal volume element. The Jaumann stresses and strains are used. Layer-wise stretching and shear warping through the thickness functions are used to model the three-dimensional behavior of the shell, where displacement and stress continuities are enforced along the ply interfaces. The kinematic behavior is related to the original undeformed coordinate system using the global displacements and their derivatives. Numerical analyses of composite shells are performed to compare the three theories. The commercial code ABAQUS is also used in this investigation as a comparison.  相似文献   

18.
The first-order shear deformation moderate rotation shell theory of Schmidt and Reddy [R. Schmidt and J. N. Reddy, J. Appl. Mech. 55, 611–617 (1988)] is used as a basis for the development of finite element models for the analysis of the static, geometrically non-linear response of anisotropic and laminated structures. The incremental, total Lagrangian formulation of the theory is developed, and numerical solutions are obtained by using the isoparametric Lagrangian 9-node and Serendipity 8-node shell finite elements. Various integration schemes (full, selective reduced, and uniformly reduced integration) are applied in order to detect and to overcome the effects of shear and membrane locking on the predicted structural response. A number of sample problems of isotropic, orthotropic, and multi-layered structures are presented to show the accuracy of the present theory. The von Kármán-type first-order shear deformation shell theory and continuum 2D theory are used for comparative analyses.  相似文献   

19.
IntroductionInrecentyears,fiber_reinforcedcompositelaminatedpanelshavebeenwidelyusedintheaerospace,marine ,automobileandotherengineeringindustries .Theproblemofbucklingandpostbucklingofcylindricalpanelsunderaxialcompressionortorsionhasbeenextensivelystudied .Incontrast,theliteratureoncylindricalpanelsunderpressureloadingisrelativelyspares.Thesestudiesincludealinearbucklinganalysis (Singeretal.[1]) ,anonlinearbucklinganalysi(YamadaandCroll[2 ]) ,anelastoplasticbucklinganalysisusingreducedstif…  相似文献   

20.
The vibration and stability of axially loaded sandwich cylindrical shells with the functionally graded (FG) core with and without shear stresses and rotary inertia resting Pasternak foundation are investigated. The dynamic stability is derived based on the first order shear deformation theory (FSDT) including shear stresses. The axial load and dimensionless fundamental frequency for FG sandwich shell with shear stresses and rotary inertia and resting on the Pasternak foundation. Finally, the influences of variations of FG core, elastic foundations, shear stresses and rotary inertia on the fundamental frequencies and critical axial loads are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号