首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
闭环集成光陀螺的2π复位误差分析   总被引:1,自引:1,他引:0  
对于闭环集成光陀螺,工作环境温度的变化会引起其核心器件——集成光器件的2π电压的变化,陀螺的标度因数特性也会随之发生改变。众所周知,集成光器件的输出相移和加在集成光器件上的电压成正比,2π电压的变化是由集成光器件的调制系数变化引起的。该文量化地分析了调制系数变化引起的陀螺输出误差,算出了调制系数引起的陀螺标度因数的变化量,并与仿真结果作了比较。  相似文献   

2.
针对光纤陀螺启动过程标度因数变化大、稳定时间长的问题,提出标度因数补偿方案。分析了光纤陀螺启动过程中标度因数误差及超辐射发光二极管平均波长随温度变化误差产生的物理机制,建立了启动过程中标度因数误差的数学模型。进一步提出了一种通过测量温控电桥电路THERMIN端电压实时补偿启动过程标度因数的方案。试验结果表明,启动过程中(2 s内)光纤陀螺标度因数误差峰峰值从约25 000×10~(-6)降低到小于300×10~(-6),大幅提高了启动过程标度因数性能,满足了武器系统的快速启动需求。  相似文献   

3.
在全温范围内应用的光纤陀螺,标度因数误差是其主要的误差之一。特别是在大角速率或者高精度应用时,光纤陀螺的标度因数误差甚至超过零偏漂移误差。在实际使用中,需对陀螺标度因数在全温范围内进行建模和补偿。对光纤陀螺标度因数误差机理进行详细分析后,提出了一种连续旋转的光纤陀螺全温标度因数快速建模补偿方法。基于单轴速率转台的连续旋转,可以自动快速完成标度因数全温建模且工程实现简单易行。更重要的是该方法可以有效识别标度因数在全温范围内的变化拐点,提高建模和补偿的精度。对比试验结果表明,采用此方法后能精确测得某型光纤陀螺全温工作的标度因数真实拐点为48℃,全温标度因数补偿精度优于15′10~(-6),较按照GJB2426-2004进行的多点测试后补偿提高10%左右。  相似文献   

4.
为了进一步提高光纤陀螺标度因数的测试精度,对光纤陀螺标度因数测试过程进行理论分析,确定了影响光纤陀螺标度因数测试误差的主要因素,并进行了计算机仿真和实验验证。结果表明:由于安装误差、北向地速分量以及转台速率精度的影响,光纤陀螺测试起始位置和采样时间的选择均会给小速率标度因数不对称性和非线性度的测试带来误差,而大速率标度因数的测试基本不受影响;通过对各输入速率点进行整圈采样,可以有效地降低小速率标度因数的测试误差,使其测试精度提高1个量级以上,实现对光纤陀螺标度因数性能更加准确的测试。  相似文献   

5.
光纤陀螺标度因数分段标定的工程实现   总被引:1,自引:0,他引:1  
基于光纤陀螺标度因数存在非线性和不对称性,从工程实用角度出发,介绍了光纤陀螺速率标定方法,给出了光纤陀螺标度因数分段标定的工程实现方案,阐述了速率标定测试数据最优分段原则,找出了使分段标定后不连续光纤陀螺模型变成连续模型的解决措施.多个光纤陀螺速率标定的研究结果显示:分段标定能较大程度上减小光纤陀螺标度因数非线性度;利用实测数据进行离线导航计算的结果表明:对光纤陀螺标度因数分段标定能减小标度因数误差对导航精度的影响,文中分段标定方法切实可行.  相似文献   

6.
高精度惯性导航系统对由温度引起的光纤陀螺标度因数变化指标提出了很高的要求。采用温度补偿技术是一种提升标度因数性能的有效方法,其中建立精确且普适的温度模型是关键。提出并分析了光纤陀螺温度与标度因数模型的迟滞现象。通过分析和试验表明,标度因数模型的迟滞现象是由光纤陀螺结构的热不均匀性造成的,采用多温度点采样来修正标度因数模型的方法可以有效避免模型的迟滞现象,提升标度因数模型的补偿效果,使光纤陀螺可以适应各种温度变化的环境。在-40℃~+60℃范围内同时对光纤环圈和光源的温度进行采集,并利用光源温度与平均波长的关系来修正标度因数模型,通过模型修正可以将光纤陀螺全温标度因数稳定性指标由常规模型下的36×10~(–6)提升到12×10~(–6)。  相似文献   

7.
针对激光陀螺惯性测量组件在传统的分立式标定中受橡胶减震器影响的问题,从系统的角度对激光陀螺惯性测量组件的标度因数误差、安装误差传播规律进行分析。通过分别绕三只陀螺敏感轴转动激发激光陀螺的标度因数误差、安装误差,通过三只加速度计敏感轴分别指天激发加速度计的标度因数误差、安装误差和零位,从而完成激光陀螺惯性测量组件的系统级标定。在未进行温控及温补的情况下,陀螺仪标度因数误差重复性在3.5×10~(-6)以内,安装误差重复性在3″以内,加速度计标度因数误差和零位在其性能指标内,安装误差在4.5″以内。试验结果表明,该方法满足高精度、长期稳定性好的惯导系统工程应用要求。  相似文献   

8.
在设计闭环光纤陀螺的过程中发现,数模转换器D/A以及Y波导等器件的非线性容易导致陀螺出现死区及标度因数误差。为此,从理论上分析了光纤陀螺反馈回路的非线性误差对光纤陀螺性能的影响。通过分析可知,当Sagnac相移小于反馈回路积分非线性误差引起的相位差,并且反馈回路的差分非线性误差较大时,则容易引起阶梯波不能正常复位导致死区,也分析了反馈回路非线性误差对陀螺标度因数误差的影响,并进行了仿真及实验。为了防止反馈回路非线性误差引起的死区问题,提出了一种在反馈信号中叠加均值为零的方波信号方法,并通过后续信号处理中的平均过程消除了反馈回路非线性误差影响。  相似文献   

9.
谐振式光纤陀螺使用窄线宽激光器作为光源以得到较好的谐振特性,而激光光源线宽会受驱动电流、温度等的影响发生不同程度的展宽,从而影响标度因数。为探索激光器线宽对谐振式光纤陀螺标度因数的影响,利用光源与谐振腔的卷积模型建立陀螺谐振腔输出的解调曲线模型,基于该模型分析激光器线宽对陀螺谐振腔解调曲线斜率的影响,进一步得出激光器线宽展宽会非线性地减小标度因数的结论。完成了实验验证,并以半高全宽为300 kHz的谐振腔为例,给出了标度因数变化范围限制在1%以内时,激光器线宽需控制在3 kHz以内的结论。为谐振式光纤陀螺中激光器的选择以及驱动电路的设计提供了理论基础。  相似文献   

10.
标度因数的温度特性和非线性是影响大动态光纤陀螺精度的重要因素,在航空、航天等对动态精度要求较高的应用场合需要对标度因数的温度特性和非线性误差进行补偿。通过对大动态光纤陀螺标度因数的误差分析,得出环境温度和输入角速率是影响标度因数误差的主要因素。建立了一种基于双线性插值的补偿模型,对大动态光纤陀螺的标度因数的温度特性和非线性进行综合补偿。在温度范围为-40℃~+60℃、角速率范围为0~7200(°)/s的条件下,标度因数误差由补偿前超过1.3′10~(-3)降低为小于5′10~(-6),标度因数精度提升了两个数量级,验证了补偿模型的有效性。补偿算法复杂度低,易于工程实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号