首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CO2地质埋存后的逃逸问题研究进展   总被引:3,自引:0,他引:3  
张旭辉  郑委  刘庆杰 《力学进展》2010,40(5):517-527
CO2地质埋存是温室气体资源化利用及减少大气温室气体排放量的有效途径之一,埋存后CO2的逃逸会引起地表的隆起或凹陷、污染水源、破坏海洋生态系统、加剧温室气体效应等。本文重点对CO2埋存问题以及埋存后逃逸问题的研究现状作综述。重点阐述了CO2埋存后的逃逸方式以及重要的控制参数。通过分析,认为进一步需要研究的问题有:在CO2逃逸方面除要考虑扩散、渗流效应外,还要考虑井口分布的影响、高气压引起的劈裂导致的渗透性急剧增加的效应等因素的影响。   相似文献   

2.
If geo-sequestration of CO 2 is to be employed as a key emissions reduction method in the global effort to mitigate against climate change, simple yet robust screening of the risks of disposal in brine aquifers will be needed. There has been significant development of simple analytical and semi-analytical techniques to support screening analysis and performance assessment for potential carbon sequestration sites. These techniques have generally been used to estimate the size of CO 2 plumes for the purpose of leakage rate estimation. A common assumption is that both the fluids and the geological formation are incompressible. Consequently, calculation of pressure distribution requires the specification of an arbitrary radius of influence. In this article, a new similarity solution is derived using the method of matched asymptotic expansions. A large time approximation of this solution is then extended to account for inertial effects using the Forchheimer equation. By allowing for slight compressibility in the fluids and formation, the solutions improve on previous work by not requiring the specification of an arbitrary radius of influence. The validity of both solutions is explored by comparison with equivalent finite difference solutions, revealing that the new method can provide robust and mathematically rigorous solutions for screening level analysis, where numerical simulations may not be justified or cost effective.  相似文献   

3.
Transport in Porous Media - Geological CO $$_2$$ sequestration is an effective approach to mitigate greenhouse gas emissions by permanently trapping CO $$_2$$ in the subsurface. A large portion of...  相似文献   

4.
Needless to say, we are now facing a critical state in the global environment, i.e. global warming. We have to change our way of thinking and our economic systems from those dependent on fossil resources to those dependent on renewable energy resources, such as solar energy. In our field of research, electric vehicles are considered the best choice for reducing carbon dioxide emissions. A battery is not an adequate energy source for electric vehicles, because batteries quickly get depleted because of its low energy and power density. A fuel cell is a more favorable alternative to the battery; however, it has large mass and can only replace the internal combustion engine, but the power transmission mechanisms are still necessary. The new concept of an electric off-road vehicle proposed here is entirely different from those mentioned above. The vehicle has neither a combustion engine nor a battery but only electric motors. Energy to drive the motors is transmitted through air as microwaves at 2.45 GHz. This technology was developed at the Research Institute for Sustainable Humanosphere, Kyoto University, as a method for transmitting electricity from a large-scale solar power station (SPS) orbiting in space to the Earth. We have constructed some models of electric off-road vehicles and investigated their adoptability to microwave power transmission. In this paper, some experimental results on the use of microwave power transmission for powering the vehicles are presented, and some problems such as low energy transmission efficiency are also discussed.  相似文献   

5.
CO2捕集与埋存(CCS)可助力碳达峰、碳中和战略目标实现,是解决温室效应的重要手段.在众多地质埋存空间中,煤炭地下气化(UCG)后的气化腔近年来成为埋存研究的热点,但与传统埋存方式相比,相关工作仍处于理论探索阶段,缺乏现场实施案例.为推动该埋存方式的发展,文章从以下3方面开展工作.(1)介绍UCG和CO2气化腔埋存的国内外研究进展,并将后者的发展划分为概念提出阶段、潜力评价和可行性分析阶段以及机理分析阶段,目前尚处于理论探索阶段.(2)从注入性、密闭性、经济性、储容量和CO2埋存机理等多个角度出发,通过与其他埋存方式对比,分析了气化腔埋存的特点与优势:注入性良好;密闭性与未开发煤层类似,但更为复杂;显著节约CO2运输成本;埋存潜力巨大;埋存机理非常复杂,需要考虑气化腔形态、边壁性质以及超临界CO2与气化腔流体间复杂相互作用对注入和长期埋存过程的影响.(3)阐明CO2气化腔埋存所涉及的关键科学问题和工程问题,并指出未来发展趋势.在以上工作的基础上,建议国家...  相似文献   

6.
Landfill methane must be captured to reduce emissions of greenhouse gases; moreover it can be used as an alternative energy source. However, despite the widespread use of landfill gas (LFG) collection systems for over three decades, little information about their capture efficiency is available, because LFG generation rates usually remain unknown. Therefore, to assess the efficiency of greenhouse gas capture and to estimate the amount of fugitive emissions, LFG generation rates should be properly determined. In addition, to improve the capture efficiency of methane while minimizing air intrusion from the atmosphere, it is important to quantify gas flow patterns within landfills. In this study, a methodology to quantify methane generation rates and to estimate the gas permeability field was examined using inverse modeling. To account for the heterogeneous, but spatially correlated structure of refuse, the pilot point method involving geostatistical techniques and optimization algorithms was used. Synthetic observation data were generated from forward simulations for a pumping test and a baro-pneumatic test, and these data were used to test the inversion procedure. The inverse model was able to reproduce the spatial permeability distribution using the transient pressure changes in response to the withdrawal of LFG during the pumping test. The LFG generation rate was also successfully estimated using the data from the baro-pneumatic test with errors less than 2%. While this methodology was developed and successfully tested using synthetic data, it will be investigated in the future using field data from the bioreactor test cells at the Yolo County Central Landfill, CA.  相似文献   

7.
Geological sequestration of CO2 offers a promising solution for reducing net emissions of greenhouse gases into the atmosphere. This emerging technology must make it possible to inject CO2 into deep saline aquifers or oil- and gas-depleted reservoirs in the supercritical state (P > 7.4MPa and T > 31.1°C) to achieve a higher density and therefore occupy less volume underground. Previous experimental and numerical simulations have demonstrated that massive CO2 injection in saline reservoirs causes a major disequilibrium of the physical and geochemical characteristics of the host aquifer. The near-well injection zone seems to constitute an underground hydrogeological system particularly impacted by supercritical CO2 injection and the most sensitive area, where chemical phenomena (e.g. mineral dissolution/precipitation) can have a major impact on the porosity and permeability. Furthermore, these phenomena are highly sensitive to temperature. This study, based on numerical multi-phase simulations, investigates thermal effects during CO2 injection into a deep carbonate formation. Different thermal processes and their influence on the chemical and mineral reactivity of the saline reservoir are discussed. This study underlines both the minor effects of intrinsic thermal and thermodynamic processes on mineral reactivity in carbonate aquifers, and the influence of anthropic thermal processes (e.g. injection temperature) on the carbonates’ behaviour.  相似文献   

8.
《中国颗粒学报》2006,4(5):257-257
The 2006 Annual Conference of Chinese Society of Particuology cum Symposium on Particle Technology across Taiwan Straits, held in Beijing from August 18 to 21, 2006, was hosted by Chinese Society of Particuology and organized jointly by Institute of Process Engineering, CAS, and State Key Laboratory of Heavy Oil Processing, China University of Petroleum. This conference was record-breaking for its attendance by 284 registered participants from across the country, including 47 from …  相似文献   

9.
把CO2这一主要的温室气体注入到地下深处具有适当封闭条件的地层中进行封存和隔离,已被公认为是有效减少CO2排放量的一种比较安全的技术途径。砂岩透镜体油气藏具有良好的圈闭构造和储层物性,油气濒临枯竭的砂岩透镜体是较理想的CO2地质封存箱。基于币形裂纹模型和水力致裂原理,将纵向厚度和横向展布长度均远小于盖层岩石尺度的水平产状砂岩透镜体简化为盖层岩石中的I型币形裂纹,从岩石断裂力学角度分析封存箱盖层岩石的抗断裂性能。采用叠加原理给出了盖层岩石币形裂纹尖端(砂岩透镜体尖灭部位)应力强度因子的计算公式,在此基础上提出了断裂力学判别准则(K=KIC)和临界有效压应力判别准则(P=PC),从岩石断裂力学角度为砂岩透镜体封存箱盖层岩石抗断裂性能分析和评价提供了一种新的研究思路。  相似文献   

10.
Although there are a number of mathematical modeling studies for carbon dioxide (CO2) injection into aquifer formations, experimental studies are limited and most studies focus on injection into sandstone reservoirs as opposed to carbonate ones. This study presents the results of computerized tomography (CT) monitored laboratory experiments to analyze permeability and porosity changes as well as to characterize relevant chemical reactions associated with injection and storage of CO2 in carbonate formations. CT monitored experiments are designed to model fast near well bore flow and slow reservoir flows. Highly heterogeneous cores drilled from a carbonate aquifer formation located in South East Turkey were used during the experiments. Porosity changes along the core plugs and the corresponding permeability changes are reported for different CO2 injection rates and different salt concentrations of formation water. It was observed that either a permeability increase or a permeability reduction can be obtained. The trend of change in rock properties is very case dependent because it is related to distribution of pores, brine composition and thermodynamic conditions. As the salt concentration decreases, porosity and the permeability decreases are less pronounced. Calcite deposition is mainly influenced by orientation, with horizontal flow resulting in larger calcite deposition compared to vertical flow.  相似文献   

11.
Three-dimensionally ordered self-assembly of monodispersed colloidal SiO2 particles involving a structure with periodic alternation of refractive indices represents an advanced field of particuology, colloidal chemistry, materials science, optical physics and information science. Study on such self-assembly not only lays the foundation for the development of advanced functional materials, but also is significant in understanding the principles of nano- and micro-scele processes. Recent progress in three-dimensionally ordered self-assembly of colloidal SiO2 particles is reviewedinclusive of the authors‘‘ investigations.  相似文献   

12.
CO_2毛细捕获机制是CO_2地质封存中的关键科学问题,然而有关孔隙尺度下(微米极)超临界CO_2毛细捕获的研究较少.采用高压流体-显微镜-微观模型实验装置,开展超临界CO_2条件(8.5 MPa,45?C)下CO_2驱替水(排水)和水驱替CO_2(吸湿)实验,采用高分辨率照相机采集CO_2水两相流运动图像,并借助光学显微镜直接观测孔隙尺度下CO_2毛细捕获特征.同时,采用计算流体动力学方法对实验过程进行三维数值模拟.数值模拟不仅反映了实验过程中两相流驱替锋面的推进过程,还刻画了孔隙尺度下被捕获的CO_2液滴/团簇三维空间形态特征.最后,基于数值模拟给出了CO_2初始饱和度与残余饱和度曲线,即毛细捕获曲线,并对比分析了3种毛细捕获曲线预测模型(即Jurauld模型、Land模型和Spiteri模型)的优劣.分析表明,Jurauld模型的描述能力稍优于Land模型,Spiteri模型的描述能力较弱.由于Land模型只需单个参数,且参数具有明确的物理意义,因此在实际工程中,建议优先采用Land模型.  相似文献   

13.
This study is devoted to the explanation of different characteristics of magnetic filtration and the way these characteristics affect the important filtration parameters. Magnetic fields in pores and the force effect of these fields on magnetic particles and the magnetization properties of packed beds composed of ferromagnetic spheres and metal chips are evaluated. The profile of accumulation and capture regions of the particles, the variation of the fluid velocity in these regions and analytic expressions of particle capture radius are presented. The effects of filtration regime parameters on magnetic filter performance were investigated. An analytical expression has been obtained for the dependence of the logarithmic efficiency coefficient on filtration velocity, the geometry of filter elements, the particle size and other parameters of filtration. The stationary and non-stationary equations of the magnetic filtration processes are given. An expression of magnetic filter performance is shown with dimensionless parameters obtained from the filtration system. These relations are useful for calculations in engineering practice, including the design of magnetic filters, provision of suggestions on construction, and optimization and control of filter operation.  相似文献   

14.
Reservoir storage and containment of greenhouse gases   总被引:4,自引:0,他引:4  
This paper deals with the problem of disposal of industrial waste greenhouse gases (CO2) into deep reservoirs. The simulator TOUGH2 was used to model the injection of 100 kg/s of CO2 for 10 years into an aquifer 3 km deep with the object of evaluating the long-term storage prospects for this gas. Depending on the permeability structure above the injection point, some gas may escape to the surface. In the most favourable case, all of the gas dissolves into the water, and the resulting dense fluid settles in the aquifer over several thousand years. Consequently, underground storage provides a promising sink for reducing CO2 emissions to the atmosphere.  相似文献   

15.
Wang  Le  Liu  Yongzhong  Chu  Khim 《Transport in Porous Media》2012,93(3):721-735

For two-phase flows of immiscible displacement processes in porous media, we proposed a simplified model to capture the interfacial fronts, which is given by explicit expressions and satisfies the continuity conditions of pressure and normal velocity across the interface. A new similarity solution for the interfacial evolution in the rectangular coordinate system was derived by postulating a first-order approximation of the velocity distribution in the region that the two-phase fluids co-exist. The interfacial evolution equation can be explicitly expressed as a linear function, where the slope of the interfacial equation is simply related to the mobility ratio of two-phase fluids in porous media. The application of the proposed solutions to predictions of interfacial evolutions in carbon dioxide injected into saline aquifers was illustrated under different mobility ratios and operational parameters. For the purpose of comparison, the numerical solutions obtained by level set method and the similarity solutions based on the Dupuit assumptions were presented. The results show that the proposed solution can give a better approximation of interfacial evolution than the currently available similarity solutions, especially in the situation that the mobility ratio is large. The proposed approximate solutions can provide physical insight into the interfacial phenomenon and be readily used for rapidly screening carbon dioxide storage capacity in subsurface formations and monitoring the migration of carbon dioxide plume.

  相似文献   

16.
This paper investigates the role of a nonzero vapour entry pressure on reservoir storage and containment of the greenhouse gas carbon dioxide. Two effects are observed: vapour storage under confining layers, and enhanced lateral spreading of gas under confining layers. Lateral flow of gas under both impermeable and permeable confining layers is solved analytically using Buckley-Leverett assumptions. A full numerical analysis of gas and water transport is also presented, using results from the simulator TOUGH. We consider the injection of CO2 from a thermal power plant at a rate of 100 kg/s for 10 years, at a depth of 3000 metres. Inclusion of a nonzero vapour entry pressure shows that containment of this gas for at least 5000 years can be expected. The CO2 is stored predominantly in a high density vapour phase (about 600 kg/m3) under lower permeability confining layers, and also is dissolved in liquid at about 40 kg/m3.  相似文献   

17.
I congratulate the Chinese Society of Particuology(and especially my friend Professor Mooson Kwauk,the Society's distinguished President Emeritus) forits initiative in launching a new journal devoted to studiesof particle science and technology.  相似文献   

18.
Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenlDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 ~m are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system.  相似文献   

19.
Near-well effects can have a strong impact on many subsurface flow processes. In oil production, because dissolved gas is released from the oil phase when the pressure falls below the bubble point, the detailed pressure field in the immediate vicinity of a production well strongly impacts gas (and thus oil) production. This effect is complicated by the interplay of fine-scale heterogeneity and two-phase flow physics, and can be difficult to capture in coarse-grid simulations. In this article, we develop and apply a new upscaling (coarse-graining) procedure to capture such near-well subgrid effects in coarse-scale flow simulation models. The method entails the use of preprocessing computations over near-well domains [referred to as local well models (LWM)] for the determination of upscaled single-phase and two-phase near-well parameters. These parameters are computed by minimizing the mismatch between fine and coarse-scale flows over the LWM. Minimization is accomplished using a gradient-based optimization procedure, with gradients calculated through solution of adjoint equations. The boundary conditions applied on the LWM can impact the upscaled parameters, but these boundary conditions depend on the global flow and are not, therefore, known a priori. In order to circumvent this difficulty, an adaptive local–global procedure is applied. This entails performing a global coarse-scale simulation with initial estimates for well-block parameters. The resulting pressure and saturation fields are then used to define local boundary conditions for the near-well computations. The overall procedure is applied to several example problems and is shown to provide results in close agreement with reference fine-scale computations. Significant improvement in accuracy over existing near-well upscaling treatments is demonstrated, particularly for a heavy oil case with oil viscosity of ~104 cp.  相似文献   

20.
Oxyfuel combustion is a promising alternative for CO2 capture. While this has been proven in pulverized fuel (PF) burners, research in fluidized bed (FB) reactors is still scarce. Our work aims to increase the knowledge about this technology. To this purpose, a 95 kWth FB oxyfuel combustion test rig has been erected. Its main characteristics are described in this paper, giving detailed information on the subsystems: the FB reactor, the fuel and oxidant supplies, and ancillaries. Plant flexibility is emphasized. It allows to operate under different CO2/O2 ratios, and to recycle CO2 from the flue gases. Both the processes design and monitoring are supported by simulations that have been validated against experimental data, regarding fluid dynamics, combustion, and heat transfer. Finally, the performance of the facility has been tested both with coal alone and blended with biomass. CO2 concentrations over 90% (dry basis) in the flue gases have been obtained. Comparison of air and oxygen combustion tests and operational recommendations are discussed, confirming the feasibility of the FB oxyfuel technology for CO2 capture purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号