首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
For time-independent materials which undergo non-linear deformations from some given reference configuration two (dual) hypotheses are considered. Firstly it is supposed that the work done to a given state of deformation is bounded below and that the bound is attainable on a physically possible path; secondly that the complementary work to a given state of stress is bounded above and that this bound too is attainable on a physically possible path. The consequences of these assumptions are analysed, and the results of Ponter and Martin [1] in the linear theory are generalized to account for non-linear deformations, due attention being paid to questions of stability.A non-linear elastic comparison material is defined whose strain energy is equal to the work done on a minimum path for the time-independent material. Extremum principles for non-linear elastic materials given in [2] are then applied to the comparison elastic material, and bounds are thereby placed on the work and complementary-work functional of the time-independent material. Corresponding overall properties of the time-independent and elastic materials are then compared by defining respective overall constitutive laws and overall stress and deformation variables.Following the definition of strengthening (weakening) of a non-linear elastic solid given by Ogden[2] a time-independent material is said to be strengthened (weakened) when its comparison elastic material is strengthened (weakened). Local and overall aspects of this definition are examined.  相似文献   

2.
A material is cylindrically anisotropic when its elastic moduli referred to a cylindrical coordinate system are constants. Examples of cylindrically anisotropic materials are tree trunks, carbon fibers [1], certain steel bars, and manufactured composites [2]. Lekhnitskii [3] was the first one to observe that the stress at the axis of a circular rod of cylindrically monoclinic material can be infinite when the rod is subject to a uniform radial pressure (see also [4]). Ting [5] has shown that the stress at the axis of the circular rod can also be infinite under a torsion or a uniform extension. In this paper we first modify the Lekhnitskii formalism for a cylindrical coordinate system. We then consider a wedge of cylindrically monoclinic elastic material under anti-plane deformations. The stress singularity at the wedge apex depends on one material parameter γ. For a given wedge angle α, one can choose a γ so that the stress at the wedge apex is infinite. The wedge angle 2α can be any angle. It need not be larger than π, as is the case when the material is homogeneously isotropic or anisotropic. In the special case of a crack (2α=2π) there can be more than one stress singularity, some of them are stronger than the square root singularity. On the other hand, if γ < there is no stress singularity at the wedge apex for any wedge angle, including the special case of a crack. The classical paradox of Levy [6] and Carothers [7] for an isotropic elastic wedge also appears for a cylindrically anisotropic elastic wedge. There can be more than one critical wedge angle and, again, the critical wedge angle can be any angle. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
In order to determine the effect of finite deformations on the stability and non-linear time-deflection behaviour of linearly viscoelastic uniaxially stressed structures, a series of simple rigid-bar-spring dashpot models were analysed ‘exactly’. The material representation was also kept as simple as possible using the standard three-element solid model.Results obtained indicate that the relaxation behaviour of such a structure depends only on its material properties. The creep response is influenced not only by the load level but most significantly by the instantaneous non-linear elastic characteristics of the structure. For structures exhibiting instantaneous elastic local instability a ‘critical time’ may be defined beyond which equilibrium is impossible. The definition for ‘safe-load-limit’ or viscoelastic critical force usually used in linear stability analyses of viscoelastic columns is generalized.  相似文献   

4.
Bounds on the Effective Anisotropic Elastic Constants   总被引:2,自引:0,他引:2  
Hill [12] showed that it was possible to construct bounds on the effective isotropic elastic coefficients of a material with triclinic or greater symmetry. Hill noted that the triclinic symmetry coefficients appearing in the bounds could be specialized to those of a greater symmetry, yielding the effective isotropic elastic coefficients for a material with any elastic symmetry. It is shown here that it is possible to construct bounds on the effective elastic constants of a material with any anisotropic elastic symmetry in terms of triclinic symmetry elastic coefficients. Similarly, it is then possible to specialize the triclinic symmetry coefficients appearing in the bounds to those of a greater symmetry. Specific bounds are given for the effective elastic coefficients of cubic, hexagonal, tetragonal and trigonal symmetries in terms of the elastic coefficients of triclinic symmetry. These results are obtained by combining the approach of Hill [12] with a representation of the stress-strain relations due, in principle, to Kelvin [25,26] but recast in the structure of contemporary linear algebra. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Antman and Negron-Marrero [1] have shown the remarkable nature of a sphere of nonlinear elastic material subjected to a uniform pressure at the surface of the sphere. When the applied pressure exceeds a critical value the stress at the center r=0 of the sphere is infinite. Instead of nonlinear elastic material, we consider in this paper a spherically uniform linear anisotropic elastic material. It means that the stress-strain law referred to a spherical coordinate system is the same for any material point. We show that the same remarkable nature appears here. What distinguishes the present case from that considered in [1] is that the existence of the infinite stress at r=0 is independent of the magnitude of the applied traction σ0 at the surface of the sphere. It depends only on one nondimensional material parameter κ. For a certain range of κ a cavitation (if σ0>0) or a blackhole (if σ0<0) occurs at the center of the sphere. What is more remarkable is that, even though the deformation is radially symmetric, the material at any point need not be transversely isotropic with the radial direction being the axis of symmetry as assumed in [1]. We show that the material can be triclinic, i.e., it need not possess a plane of material symmetry. Triclinic materials that have as few as two independent elastic constants are presented. Also presented are conditions for the materials that are capable of a radially symmetric deformation to possess one or more symmetry planes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
This paper is concerned with the constitutive equation for slightly compressible elastic material under finite deformations. We show that material slight compressibility can be effectively taken into account in the case of high hydrostatic pressure or highly confined material. In all other situations the application of the incompressible and nearly incompressible material theories gives practically the same results. Therefore it is of interest to consider the problem in which allowing for material slight compressibility leads to results essentially different from those obtained with help of the incompressible material model. In the present paper this difference has been demonstrated for the problem of high hydrostatic pressure causing an increase of the ‘bulk’ and ‘shear’ material moduli. The behavior of a long hollow cylinder of real material under finite deformations is analyzed. The cylinder is subjected to internal pressure and axial and circular displacements at the outer surface. This problem has been solved analytically using the small parameter method. The solution obtained predicts a decrease of the axial and circular displacements of the outer surface under fixed shear (axial and circular) forces when the internal pressure is applied.  相似文献   

7.
Consider a cylinder (not necessarily of circular cross-section) that is composed of a hyperelastic material and which is stretched parallel to its axis of symmetry. Suppose that the elastic material that constitutes the cylinder is homogeneous, transversely isotropic, and incompressible and that the deformed length of the cylinder is prescribed, the ends of the cylinder are free of shear, and the sides are left completely free. In this paper it is shown that mild additional constitutive hypotheses on the stored-energy function imply that the unique absolute minimizer of the elastic energy for this problem is a homogeneous, isoaxial deformation. This extends recent results that show the same result is valid in 2-dimensions. Prior work on this problem had been restricted to a local analysis: in particular, it was previously known that homogeneous deformations are strict (weak) relative minimizers of the elastic energy as long as the underlying linearized equations are strongly elliptic and provided that the load/displacement curve in this class of deformations does not possess a maximum.  相似文献   

8.
Resultant material and spatial energy propagation vectors are defined for waves of small amplitude superposed on large static deformations in elastic materials of arbitrary symmetry. It is shown that the resultant material energy propagation vector is in the direction of the normal to the slowness surface and hence in that of the bicharacteristics.  相似文献   

9.
For infinite perfectly elastic Mooney materials, nonlinear plane waves are examined in both two and three dimensions. In two dimensions, longitudinal and shear plane waves are examined, while in three dimensions, longitudinal and torsional plane waves are considered. These exact dynamic deformations, applying to the incompressible perfectly elastic Mooney material, can be viewed as extensions of the corresponding static deformations first derived by Adkins [1] and Klingbeil and Shield [2]. Furthermore, the Mooney strain-energy function is the most general material admitting nontrivial dynamic deformations of this type. For two dimensions the determination of plane wave solutions reduces to elementary mathematical analysis, while in three dimensions an integral of the governing system of highly nonlinear ordinary differential equations is determined. In the latter case, solutions corresponding to particular parameter values are shown graphically. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The investigated cantilever beam is characterized by a constant rectangular cross-section and is subjected to a concentrated constant vertical load, to a concentrated constant horizontal load and to a concentrated constant bending torque at the free end. The same beam is made by an elastic non-linear asymmetric Ludwick type material with different behavior in tension and compression. Namely the constitutive law of the proposed material is characterized by two different elastic moduli and two different strain exponential coefficients. The aim of this study is to describe the deformation of the beam neutral surface and particularly the horizontal and vertical displacements of the free end cross-section. The analysis of large deflection is based on the Euler–Bernoulli bending beam theory, for which cross-sections, after the deformation, remain plain and perpendicular to the neutral surface; furthermore their shape and area do not change. On the stress viewpoint, the shear stress effect and the axial force effect are considered negligible in comparison with the bending effect. The mechanical model deduced from the identified hypotheses includes two kind of non-linearity: the first due to the material and the latter due to large deformations. The mathematical problem associated with the mechanical model, i.e. to compute the bending deformations, consists in solving a non-linear algebraic system and a non-liner second order ordinary differential equation. Thus a numerical algorithm is developed and some examples of specific results are shown in this paper.  相似文献   

11.
A solution for the finite-domain Eshelby-type inclusion problem of a finite elastic body containing an anti-plane strain inclusion of arbitrary cross-sectional shape prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived in a general form using a simplified strain gradient elasticity theory (SSGET). The formulation is facilitated by an extended Betti’s reciprocal theorem and an extended Somigliana’s identity based on the SSGET and suitable for anti-plane strain problems. The disturbed displacement field is obtained in terms of the SSGET-based Green’s function for an infinite anti-plane strain elastic body. The solution reduces to that of the infinite-domain anti-plane strain inclusion problem when the boundary effect is not considered. The problem of a circular cylindrical inclusion embedded concentrically in a finite cylindrical elastic matrix undergoing anti-plane strain deformations is analytically solved by applying the general solution, with the Eshelby tensor and its average over the circular cross section of the inclusion obtained in closed forms. This Eshelby tensor, being dependent on the position, inclusion size, matrix size, and a material length scale parameter, captures the inclusion size and boundary effects, unlike existing ones. It reduces to the classical linear elasticity-based Eshelby tensor for the circular cylindrical inclusion in an infinite matrix if both the strain gradient and boundary effects are suppressed. Numerical results quantitatively show that the inclusion size effect can be quite large when the inclusion is small and that the boundary effect can dominate when the inclusion volume fraction is high. However, the inclusion size effect is diminishing with the increase of the inclusion size, and the boundary effect is vanishing as the inclusion volume fraction becomes sufficiently low.  相似文献   

12.
The occurrence and development of convection in a two-layer system heated below has been investigated [1–5] under the assumption that the interface of the fluids is horizontal and is not subject to deformations. However, this assumption may not be satisfied if the surface tension on the interface is small and the fluids have either nearly equal densities or the heavier fluid is situated at the top. In the present paper, an attempt is made to study the convection regimes in a two-layer system with deformation of the interface when there is heating from below or above. The simultaneous influence of the convective and Rayleigh-Taylor instability mechanisms is taken into account; the surface tension on the interface is assumed to be infinitesimally small, and thermocapillary effects are ignored. A two-fluid variant of the method of markers and cells [6–9] is used for the numerical solution of the convection equations. A diagram of the regimes is constructed. It is shown that depending on the values of the parameters the system either preserves its two-layer structure, or the development of the conveetive motion leads to the breakup of the interface and complete mixing of the fluids.  相似文献   

13.
Many composite materials, including biological tissues, are modeled as non-linear elastic materials reinforced with elastic fibers. In the current paper, the full set of dynamic equations for finite deformations of incompressible hyperelastic solids containing a single fiber family are considered. Finite-amplitude wave propagation ansätze compatible with the incompressibility condition are employed for a generic fiber family orientation. Corresponding non-linear and linear wave equations are derived. It is shown that for a certain class of constitutive relations, the fiber contribution vanishes when the displacement is independent of the fiber direction.Point symmetries of the derived wave models are classified with respect to the material parameters and the angle between the fibers and the wave propagation direction. For planar shear waves in materials with a strong fiber contribution, a special wave propagation direction is found for which the non-linear wave equations admit an additional symmetry group. Examples of exact time-dependent solutions are provided in several physical situations, including the evolution of pre-strained configurations and traveling waves.  相似文献   

14.
Weakly non-linear plane waves are considered in hyperelastic crystals. Evolution equations are derived at a quadratically non-linear level for the amplitudes of quasi-longitudinal and quasi-transverse waves propagating in arbitrary anisotropic media. The form of the equations obtained depends upon the direction of propagation relative to the crystal axes. A single equation is found for all propagation directions for quasi-longitudinal waves, but a pair of coupled equations occurs for quasi-transverse waves propagating along directions of degeneracy, or acoustic axes. The coupled equations involve four material parameters but they simplify if the wave propagates along an axis of material symmetry. Thus, only two parameters arise for propagation along an axis of twofold symmetry, and one for a threefold axis. The transverse wave equations decouple if the axis is fourfold or higher. In the absence of a symmetry axis it is possible that the evolution equations of the quasi-transverse waves decouple if the third-order elastic moduli satisfy a certain identity. The theoretical results are illustrated with explicit examples.  相似文献   

15.
We study here the three-dimensional motion of an elastic structure immersed in an incompressible viscous fluid. The structure and the fluid are contained in a fixed bounded connected set Ω. We show the existence of a weak solution for regularized elastic deformations as long as elastic deformations are not too important (in order to avoid interpenetration and preserve orientation on the structure) and no collisions between the structure and the boundary occur. As the structure moves freely in the fluid, it seems natural (and it corresponds to many physical applications) to consider that its rigid motion (translation and rotation) may be large. The existence result presented here has been announced in [4]. Some improvements have been provided on the model: the model considered in [4] is a simplified model where the structure motion is modelled by decoupled and linear equations for the translation, the rotation and the purely elastic displacement. In what follows, we consider on the structure a model which represents the motion of a structure with large rigid displacements and small elastic perturbations. This model, introduced by [15] for a structure alone, leads to coupled and nonlinear equations for the translation, the rotation and the elastic displacement.  相似文献   

16.
This paper considers small amplitude vibrations superimposed upon large planar deformations of an infinite wedge composed of a neo-Hookean elastic material. It is shown herein that even though the static deformation of the entire wedge and the vibrations of the wedge faces are planar, out-of-plane vibrational modes must necessarily be excited in the wedge interior even to first order in an asymptotic expansion of the motion with small parameter being the amplitude of the vibration applied to the wedge faces. In addition, it is demonstrated that this result is fundamentally due to the non-linearity of the problem by demonstrating that the corresponding problem for an incompressible, isotropic, homogeneous linear elastic wedge does not exhibit the same behavior.  相似文献   

17.
Several results are presented concerning symmetry properties of the tensor of third order elastic moduli. It is proven that a set of conditions upon the components of the modulus tensor are both necessary and sufficient for a given direction to be normal to a plane of material symmetry. This leads to a systematic procedure by which the underlying symmetry of a material can be calculated from the 56 third order moduli. One implication of the symmetry conditions is that the nonlinearity parameter governing the evolution of acceleration waves and nonlinear wave phenomena is identically zero for all transverse waves associated with a plane of material symmetry.  相似文献   

18.
The duality between stress and deformation fields for plane deformations of a compressible isotropic hyperelastic material established by J. M. Hill [1]is generalized to deformations of a homogeneous elastic material without the restrictions of isotropy and hyperelasticity. At the same time a clarification of Hill's results is achieved.  相似文献   

19.
Within the framework of the direct approach to the plate theory we consider the infinitesimal deformations of a plate made of hyperelastic materials taking into account the non-homogeneously distributed initial stresses. Here we consider the plate as a material surface with 5 degrees of freedom (3 translations and 2 rotations). Starting from the equations of the non-linear elastic body and describing the small deformations superposed on the finite deformation we present the two-dimensional constitutive equations for a plate. The influence of initial stresses in the bulk material on the plate behavior is considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号