首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
针对带非线性摩擦力矩和负载扰动的高精度猎雷声纳基阵姿态稳定系统,提出了一种基于神经网络的自适应反步法控制方法。其中神经网络用于估计未知非线性摩擦力矩,进而设计反步法控制器和参数自适应律来对神经网络估计误差和负载扰动进行补偿。最后应用Lyapunov方法证明了所提出的自适应控制器能保证闭环系统的稳定性,并且可以通过选择适当的控制器参数来调整收敛率。仿真结果表明,基于神经网络的自适应反步法控制方法与PID控制相比,系统的动、静态性能指标及鲁棒性得到了全面的改善,与双闭环PID控制相比,跟踪精度提高了3倍多。  相似文献   

2.
Direct neural discrete control of hypersonic flight vehicle   总被引:1,自引:0,他引:1  
This paper investigates the discrete neural control for flight path angle and velocity of a generic hypersonic flight vehicle (HFV). First, strict-feedback form is set up for the attitude subsystem considering flight path angle, pitch angle, and pitch rate by altitude-flight path angle transformation. Secondly, the direct Neural Network?(NN) control is proposed for attitude subsystem via back-stepping scheme. The direct design is employed for system uncertainty approximation with less online tuned NN parameters and there is no need to know the information of the upper bound of control gain during the controller design. Thirdly, with error feedback and NN design, the semiglobal uniform ultimate boundedness (SGUUB) stability is guaranteed of the closed-loop system. Similar NN control is applied on velocity subsystem. Finally, the feasibility of the proposed controller is verified by a simulation example.  相似文献   

3.
Kim  Seok-Kyoon  Ahn  Choon Ki 《Nonlinear dynamics》2021,103(2):1681-1692

The proposed observer-based control mechanism solves the trajectory tracking problem in the presence of external disturbances with the reduction in sensor numbers. This systematically considers the quadcopter nonlinear dynamics and parameter and load variations by adopting the standard controller design approach based on a disturbance observer (DOB). The first feature is designing first-order observers for estimating the velocity and angular velocity error, with their parameter independence obtained from the DOB design technique. As the second feature, the resultant velocity observer-based control action including active damping and DOBs secures first-order tracking behavior for the position and attitude (angle) loops through pole zero cancellation, thereby forming a proportional–derivative control structure. Closed-loop analysis results reveal the performance recovery and steady-state error removal properties in the absence of tracking error integrators. The numerical verification confirms the effectiveness of the proposed mechanism using MATLAB/Simulink.

  相似文献   

4.
In this paper, a robust dynamic surface controller with prescribed performance for a class of nonlinear feedback systems is proposed. Utilizing the prescribed performance control (PPC), the prescribed steady state and transient performance for the tracking error of the original system can be ensured through the stabilization of a transformed system. The dynamic surface control procedure solves the mismatched uncertainties and the explosion of the complexity problem. The uncertainties can be eliminated by the constructed compensation signals of a low-pass filter. And it is proven in the performance analysis that the proposed controller is of low complexity and has improved system robustness. Simulation results verify the proposed approach.  相似文献   

5.
A robust attitude tracking control scheme for spacecraft formation flying is presented. The leader spacecraft with a rapid mobile antenna and a camera is modeled. While the camera is tracking the ground target, the antenna is tracking the follower spacecraft. By an angular velocity constraint and an angular constraint, two methods are proposed to compute the reference attitude profiles of the camera and antenna, respectively. To simplify the control design problem, this paper first derives the desired inverse system (DIS), which can convert the attitude tracking problem of 3D space into the regulator problem. Based on DIS and sliding mode control (SMC), a robust attitude tracking controller is developed in the presence of mass parameter uncertainties and external disturbance. By Lyapunov stability theory, the closed loop system stability can be achieved. The numerical simulations show that the proposed robust control scheme exhibits significant advantages for the multi-target attitude tracking of a two-spacecraft formation.  相似文献   

6.
针对带不匹配不确定非线性干扰的惯性平台稳定回路跟踪控制问题,提出了基于backstepping的动态滑模控制方法。首先,建立了惯性平台稳定回路的等价模型,该模型由一个线性模型加上一个不确定的非线性函数组成。然后,基于backstepping方法设计了带渐近稳定滑模面的动态滑模控制器,解决了模型不匹配的问题,并提高了系统的鲁棒性。进而应用Lyapunov稳定性理论证明了所设计的控制器不仅能保证闭环系统的稳定性,而且可以通过选择适当的控制器参数来调整跟踪误差的收敛率。最后,仿真结果表明,基于backstepping的动态滑模控制方法与PID控制方法相比,提高了系统的跟踪精度,增强了鲁棒性。  相似文献   

7.
This study presents a self-organizing functional-linked neuro-fuzzy network (SFNN) for a nonlinear system controller design. An online learning algorithm, which consists of structure learning and parameter learning of a SFNN, is presented. The structure learning is designed to determine the number of fuzzy rules and the parameter learning is designed to adjust the parameters of membership function and corresponding weights. Thus, an adaptive self-organizing functional-linked neuro-fuzzy control (ASFNC) system, which is composed of a computation controller and a robust compensator, is proposed. In the computation controller, a SFNN observer is utilized to approximate the system dynamic and the robust compensator is designed to eliminate the effect of the approximation error introduced by the SFNN observer upon the system stability. Finally, to show the effectiveness of the proposed ASFNC system, it is applied to a chaotic system. The simulation results demonstrate that favorable control performance can be achieved by the proposed ASFNC scheme without any knowledge of the control plants and without requiring preliminary offline tuning of the SFNN observer.  相似文献   

8.
In this paper, we present a robust fault-tolerant control scheme to achieve attitude control of flexible spacecraft with disturbances and actuator failures. It is shown that the control algorithms are not only attenuate exogenous bounded disturbances with attenuation level, but also able to tolerate partial loss of actuator effectiveness. The proposed controller design is simple and can guarantee the faulty closed-loop system to be quadratically stable with a prescribed upper bound of the cost function. The design algorithms are obtained by combining free weighting matrices method with linear matrix inequality technique. The effectiveness of the proposed design method is demonstrated in a spacecraft attitude control system subject to loss of actuator effectiveness.  相似文献   

9.
The goal of the present study is to develop a decentralized coordinated attitude control algorithm for satellite formation flying. To handle the non-linearity of the dynamic system, the problems of absolute and relative attitude dynamics are formulated for the state-dependent Riccati equation (SDRE) technique. The SDRE technique is for the first time utilized as a non-linear controller of the relative attitude control problem for satellite formation flying, and then the results are compared to those from linear control methods, mainly the PD and LQR controllers. The stability region for the SDRE-controlled system was obtained using a numerical method. This estimated stability region demonstrates that the SDRE controller developed in the present paper guarantees the globally asymptotic stability for both the absolute and relative attitude controls. Moreover, in order to complement a non-selective control strategy for relative attitude error in formation flying, a selective control strategy is suggested. This strategy guarantees not only a reduction in unnecessary calculation, but also the mission-failure safety of the attitude control algorithm for satellite formation. The attitude control algorithm of the formation flying was tested in the orbital-reference coordinate system for the sake of applying the control algorithms to Earth-observing missions. The simulation results illustrate that the attitude control algorithm based on the SDRE technique can robustly drive the attitude errors to converge to zero.  相似文献   

10.
Ding  Runze  Ding  Chenyang  Xu  Yunlang  Yang  Xiaofeng 《Nonlinear dynamics》2022,108(2):1339-1356

High precision motion control of permanent magnet linear motors (PMLMs) is limited by undesired nonlinear dynamics, parameter variations, and unstructured uncertainties. To tackle these problems, this paper presents a neural-network-based adaptive robust precision motion control scheme for PMLMs. The presented controller contains a robust feedback controller and an adaptive compensator. The robust controller is designed based on the robust integral of the sign of the error method, and the adaptive compensator consists of a neural network component and a parametric component. Moreover, a composite learning law is designed for the parameter adaption in the compensator to further enhance the control performance. Rigorous stability analysis is provided by using the Lyapunov theory, and asymptotic tracking is theoretically achieved. The effectiveness of the proposed method is verified by comparative simulations and experiments on a PMLM-driven motion stage.

  相似文献   

11.
Multirotor aerial robotic vehicles attract much attention due to their increased load capacity and high maneuverability. In this paper, a robust optimal attitude controller is proposed for a kind of multirotor helicopters—hexarotors. It consists of a nominal optimal controller and a robust compensator. The nominal controller is designed based on the linear quadratic regulation (LQR) method to achieve desired tracking of the nominal system, and the robust compensator is added to restrain the influence of uncertainties. The key contributions of this work are twofold: firstly, the closed-loop control system is robust against coupling and nonlinear dynamics, parametric uncertainties, and external disturbances; secondly, a decoupled and linear time-invariant control architecture making it ideal for real-time implementation. The attitude tracking errors are proven to be ultimately bounded with specified boundaries. Simulation and experimental results on the hexarotor demonstrate the effectiveness of the proposed attitude control method.  相似文献   

12.
Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro(VSCMG), which supplies only two internal torques.Nonlinear controllability theory is used to show that the dynamics are locally controllable from the equilibrium point and thus can be asymptotically stabilized to the equilibrium point via time-invariant piecewise continuous feedback laws or time-periodic continuous feedback laws. Specifically,when the total angular momentum of the spacecraft-VSCMG system is zero, any orientation can be a controllable equilibrium attitude. In this case, the attitude stabilization problem is addressed by designing a kinematic stabilizing law, which is implemented through a nonlinear proportional and derivative controller, using the generalized dynamic inverse(GDI)method. The steady-state instability inherent in the GDI controller is elegantly avoided by appropriately choosing control gains. In order to obtain the command gimbal rate and wheel acceleration from control torques, a simple steering logic is constructed to accommodate the requirements of attitude stabilization and singularity avoidance of the VSCMG. Illustrative numerical examples verify the efcacy of the proposed control strategy.  相似文献   

13.
An error constraint control problem is considered for pure-feedback systems with non-affine functions being possibly in-differentiable. A new constraint variable is used to construct virtual control that guarantees the tracking error within the transient and steady-state performance envelopment. The new error transformation avoids non-differentiable problems and complex deductions caused by traditional error constraint approaches. A locally semi-bounded and continuous condition for non-affine functions is employed to ensure the controllability and transform the closed-loop system into a pseudo-affine form. An auxiliary system with bounded compensation term is proposed for nonlinear systems with input saturation. On the basis of backstepping technique, an adaptive neural controller is designed to handle unknown terms and circumvent repeated differentiations of virtual controls. The boundedness and convergence of the closed-loop system are proved by Lyapunov theory. Asymptotic tracking is achieved without violating control input constraint and error constraint. Two examples are performed to verify the theoretical findings.  相似文献   

14.
This paper presents a novel discrete adaptive fuzzy controller for electrically driven robot manipulators. It addresses how to overcome the nonlinearity, uncertainties, discretizing error and approximation error of the fuzzy system for asymptotic tracking control of robotic manipulators. The proposed controller is model-free in the form of discrete Mamdani fuzzy controller. The parameters of fuzzy controller are adaptively tuned using an adaptive mechanism derived by stability analysis. A robust control term is used to compensate the approximation error of the fuzzy system for asymptotic tracking of a desired trajectory. The controller is robust against all uncertainties associated with the robot manipulator and actuators. It is easy to implement since it requires only the joint position feedback. Compared with fuzzy controllers which employ all states to guarantee stability, the proposed controller is very simpler. Stability analysis and simulation results show its efficiency in the tracking control.  相似文献   

15.
Attitude tracking control of flexible spacecraft with large amplitude slosh   总被引:1,自引:0,他引:1  
This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli–Euler beam, and the assumed modal method is employed.A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics,liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.  相似文献   

16.
This paper proposes an active disturbance rejection adaptive controller for tracking control of a class of uncertain nonlinear systems with consideration of both parametric uncertainties and uncertain nonlinearities by effectively integrating adaptive control with extended state observer via backstepping method. Parametric uncertainties are handled by the synthesized adaptive law and the remaining uncertainties are estimated by extended state observer and then compensated in a feedforward way. Moreover, both matched uncertainties and unmatched uncertainties can be estimated by constructing an extended state observer for each channel of the considered nonlinear plant. Since parametric uncertainties can be reduced by parameter adaptation, the learning burden of extended state observer is much reduced. Consequently, high-gain feedback is avoided and improved tracking performance can be expected. The proposed controller theoretically guarantees a prescribed transient tracking performance and final tracking accuracy in general while achieving asymptotic tracking when the uncertain nonlinearities are not time-variant. The motion control of a motor-driven robot manipulator is investigated as an application example with some suitable modifications and improvements, and comparative simulation results are obtained to verify the high tracking performance nature of the proposed control strategy.  相似文献   

17.
In this paper, a self-organizing Takagi–Sugeno–Kang (TSK) type fuzzy neural network (STFNN) is proposed. The self-organizing approach demonstrates the property of automatically generating and pruning the fuzzy rules of STFNN without the preliminary knowledge. The learning algorithms not only extract the fuzzy rule of STFNN but also adjust the parameters of STFNN. Then, an adaptive self-organizing TSK-type fuzzy network controller (ASTFNC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller uses an STFNN to approximate an ideal controller, and the robust compensator is designed to eliminate the approximation error in the Lyapunov stability sense without occurring chattering phenomena. Moreover, a proportional-integral (PI) type parameter tuning mechanism is derived to speed up the convergence rates of the tracking error. Finally, the proposed ASTFNC system is applied to a DC motor driver on a field-programmable gate array chip for low-cost and high-performance industrial applications. The experimental results verify the system stabilization and favorable tracking performance, and no chattering phenomena can be achieved by the proposed ASTFNC scheme.  相似文献   

18.
航天器有限时间饱和姿态跟踪控制   总被引:1,自引:0,他引:1  
针对刚体航天器系统,对存在模型不确定性、外界干扰力矩和控制器饱和等条件下的姿态跟踪控制问题进行了研究。首先,考虑未知模型不确定性和外界干扰,且总干扰上界为未知常数,结合快速非奇异终端滑模、快速终端滑模趋近律以及辅助系统构造了基本的鲁棒有限时间饱和控制器,并通过辅助系统直接补偿了控制器饱和;其次,针对系统总干扰具有多项式上界的情形,进一步结合自适应控制算法,对其上界函数中的未知参数进行在线估计,并设计了自适应有限时间饱和控制器。同时,基于Lyapunov稳定性理论证明了所提出控制算法的有限时间收敛特性。最后,通过数值仿真验证所提出控制算法的控制效果,在两种控制器作用下姿态的跟踪精度分别为5×10-5和1×10-5,证明了所提出控制算法的有效性。  相似文献   

19.
This paper presents a dual-stage control system design method for flexible spacecraft attitude maneuvering control by use of on-off thrusters and active vibration suppression by embedded smart material as actuator. As a stepping stone, an adaptive sliding mode controller with the assumption of knowing the upper bounds of the lumped perturbation is designed that ensures exponential convergence or uniform ultimate boundedness (UUB) of the attitude control system in the presence of bounded parameter variation/disturbances and control input saturation as well. Then this adaptive controller is redesigned such that the need for knowing the upper bound in advance is eliminated. Lyapunov analysis shows that this modified adaptive controller can also guarantee the exponential convergence or UUB of the system. For actively suppressing the induced vibration, linear quadratic regulator (LQR) based positive position feedback control method is presented. Numerical simulations are performed to show that rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque/parameter uncertainty and saturation input.  相似文献   

20.
A novel combination of finite time control and control allocation with uncertain configuration matrix due to actuator misalignment is investigated for attitude stabilization of a rigid spacecraft. Finite time controller using nonsingular terminal sliding mode technique is firstly designed as virtual control of control allocator to produce the three axis torques, and can guarantee finite time reachability of given attitude motion of spacecraft in the presence of external disturbances. The convergences of this feedback controller for the resulting closed loop systems are also proven theoretically. Then, under the condition of uncertainty included in the configuration matrix due to actuator misalignment, a robust least squares-based control allocation is employed to deal with the problem of distributing the three axis torques over the available actuators under redundancy, in which the focus of this control allocation is to find the optimal control vector of actuator by minimizing the worst-case residual, under the condition of the uncertainty included in actuator configuration matrix and control constraints like saturation. Simulation results using the orbiting spacecraft model show good performance under external disturbances and even uncertain configuration matrix, which validates the effectiveness and feasibility of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号