首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
由于直接配点法在求解边值问题时边界上的求解精度较低,本文提出了Hermite梯度重构核近似配点法(HGCM)来改进边界求解精度。重构核近似是无网格法中一种常用的近似函数,但是其在求解高阶导数时格式复杂且非常耗时。HGCM采用梯度重构核近似构建形函数的任意高阶导数,提高了计算效率;通过Hermite配点法构建离散方程,提高了边界求解精度。这种方法在求解对应变系数四阶偏微分方程的功能梯度材料板的静力问题时精度高,计算效率高,并可进一步推广应用于高阶偏微分方程描述的边值问题。  相似文献   

2.
In this study, a unified nonlinear dynamic buckling analysis for Euler–Bernoulli beam–columns subjected to constant loading rates is proposed with the incorporation of mercurial damping effects under thermal environment. Two generalized methods are developed which are competent to incorporate various beam geometries, material properties, boundary conditions, compression rates, and especially, the damping and thermal effects. The Galerkin–Force method is developed by implementing Galerkin method into force equilibrium equations. Then for solving differential equations, different buckled shape functions were introduced into force equilibrium equations in nonlinear dynamic buckling analysis. On the other hand, regarding the developed energy method, the governing partial differential equation for dynamic buckling of beams is also derived by meticulously implementing Hamilton’s principles into Lagrange’s equations. Consequently, the dynamic buckling analysis with damping effects under thermal environment can be adequately formulated as ordinary differential equations. The validity and accuracy of the results obtained by the two proposed methods are rigorously verified by the finite element method. Furthermore, comprehensive investigations on the structural dynamic buckling behavior in the presence of damping effects under thermal environment are conducted.  相似文献   

3.
Computations of wall distances still play a key role in modern turbulence modeling. Motivated by the expense involved in the computation, an approach solving partial differential equations is considered. An Euler-like transport equation is proposed based on the Eikonal equation. Thus, the efficient algorithms and code components developed for solving transport equations such as Euler and Navier-Stokes equations can be reused. This article provides a detailed implementation of the transport equation in the Cartesian coordinates based on the code of computational fluid dynamics for missiles (MICFD) of Beihang University. The transport equation is robust and rapidly convergent by the implicit lower-upper symmetric Gauss-Seidel (LUSGS) time advancement and upwind spatial discretization. Geometric derivatives must also be upwind determined to ensure accuracy. Special treatments on initial and boundary conditions are discussed. This distance solving approach is successfully applied on several complex geometries with 1-1 blocking or overset grids.  相似文献   

4.
Computations of wall distances still play a key role in modern turbulence modeling. Motivated by the expense involved in the computation, an approach solving partial differential equations is considered. An Euler-like transport equation is proposed based on the Eikonal equation. Thus, the efficient algorithms and code components developed for solving transport equations such as Euler and Navier-Stokes equations can be reused. This article provides a detailed implementation of the transport equation in the Cartesian coordinates based on the code of computational fluid dynamics for missiles (MICFD) of Beihang University. The transport equation is robust and rapidly convergent by the implicit lower-upper symmetric Gauss-Seidel (LUSGS) time advancement and upwind spatial discretization. Geometric derivatives must also be upwind determined to ensure accuracy. Special treatments on initial and boundary conditions are discussed. This distance solving approach is successfully applied on several complex geometries with 1–1 blocking or overset grids.  相似文献   

5.
Helmholtz方程的微分容积解法   总被引:1,自引:0,他引:1  
用一种新型的数值技术--微分容积法(Differential Cubature Method)求解二维Helmholtz方程的边值问题,几个数值算例表明,该方法稳定收敛,并具有较好的数值精度,本文方法适用于求解具有较小波数的Helmholtz方程。  相似文献   

6.
The purpose of this research is to analyze the application of neural networks and specific features of training radial basis functions for solving 2‐dimensional Navier‐Stokes equations. The authors developed an algorithm for solving hydrodynamic equations with representation of their solution by the method of weighted residuals upon the general neural network approximation throughout the entire computational domain. The article deals with testing of the developed algorithm through solving the 2‐dimensional Navier‐Stokes equations. Artificial neural networks are widely used for solving problems of mathematical physics; however, their use for modeling of hydrodynamic problems is very limited. At the same time, the problem of hydrodynamic modeling can be solved through neural network modeling, and our study demonstrates an example of its solution. The choice of neural networks based on radial basis functions is due to the ease of implementation and organization of the training process, the accuracy of the approximations, and smoothness of solutions. Radial basis neural networks in the solution of differential equations in partial derivatives allow obtaining a sufficiently accurate solution with a relatively small size of the neural network model. The authors propose to consider the neural network as an approximation of the unknown solution of the equation. The Gaussian distribution is used as the activation function.  相似文献   

7.
General exact solutions in terms of wavelet expansion are obtained for multi- term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial differential equations are converted into time-fractional ordinary differ- ential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-diffusion problems are given to validate the proposed analytical method.  相似文献   

8.
The group theoretic method is applied for solving the problem of the combined influence of the thermal diffusion and diffusion thermoeffect on magnetohydrodynamic free convective heat and mass transfer over a porous stretching surface in the presence of thermophoresis particle deposition with variable stream conditions. The application of one-parameter groups reduces the number of independent variables by one; consequently, the system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The equations along with the boundary conditions are solved numerically by using the Runge-Kutta-Gill integration scheme with the shooting technique. The impact of the Soret and Dufour effects in the presence of thermophoresis particle deposition with a chemical reaction plays an important role on the flow field.  相似文献   

9.
A semi-analytical approach for the geometrically non-linear analysis of rectangular laminated plates with general inplane and out-of-plane boundary conditions under a general distribution of out-of-plane loads is developed. The analysis is based on the elastic thin plate theory with geometrically non-linear von Kármán strains. The solution of the non-linear partial differential equations is reduced to an iterative sequential solution of non-linear ordinary differential equations using the multi-term extended Kantorovich method. The efficiency, accuracy, and convergence of the proposed method are examined through a comparison with other semi-analytical methods and with finite element analyses. The capabilities of the approach and its applicability to the non-linear large deflection analysis of plate structures are demonstrated through various numerical examples. Emphasis is placed on combinations of lamination, boundary, and loading conditions that cannot be analyzed using alternative semi-analytical methods.  相似文献   

10.
由于流场参数重构中, 用于重构的基网格单元的物理参数波动量相对于均值较小, 径向基函数(RBF) 直接插值方法重构会产生较大的数值振荡, 论文提出了一种增量RBF 插值方法, 并用于有限体积的流场重构步, 明显改善了插值格式的收敛性和稳定性. 算例首先通过简单的一维模型说明该方法的有效性, 当目标函数波动量相对于均值为小量时, 增量RBF 插值能够抑制数值振荡; 进一步通过二维亚音速、跨音速定常无黏算例、静止圆柱绕流非定常算例以及超音速前台阶算例来说明该方法在典型流场数值求解中的通用性和有效性. 研究表明增量RBF 重构方法可陡峭地捕捉激波间断, 可有效改善流场求解的收敛性和稳定性, 数值耗散小, 计算效率高.  相似文献   

11.
A new purely meshless method for solving elliptic partial differential equations (PDEs) is presented. The method is based on the principle of the analog equation of Katsikadelis, hence its name meshless analog equation method (MAEM), which converts the original equation into a simple solvable substitute one of the same order under a fictitious source. The fictitious source is represented by multiquadric radial basis functions (MQ-RBFs). The integration of the analog equation yields new RBFs, which are used to approximate the sought solution. Then inserting the approximate solution into the PDE and boundary conditions (BCs) and collocating at the mesh-free nodal points results in a system of linear equations, which permit the evaluation of the expansion coefficients of the RBFs series. The method exhibits key advantages over other RBF collocation methods as it is highly accurate and the coefficient matrix of the resulting linear equations is always invertible. The accuracy is achieved using optimal values for the shape parameters and the centers of the multiquadrics as well as of the integration constants of the analog equation, which are obtained by minimizing the functional that produces the PDE. Without restricting its generality, the method is illustrated by applying it to the general second order 2D and 3D elliptic PDEs. The studied examples demonstrate the efficiency and high accuracy of the developed method.  相似文献   

12.
Incorporating the effects of larger-amplitude deflection and electro-elastical properties of piezoelectric lamina, the Hamilton’s variation principle was used to deduce the fundamental formulations of smart anisotropic composite plate in Part I in terms of Reddy’s simple higher-order theory. In order to solve the five highly coupled nonlinear partial differential equations with complicated overlapping boundary conditions, a novel numerical method-Hermite differential quadrature (HDQ) method was developed to implement the differential equations with complicated overlapping boundary conditions. Based on the presently developed HDQ method, any orders derivatives of the unknown functions or any boundary conditions can be point-collocation-based discretized by a set of point-values along x- and y-direction. Then, a system of complete algebraic nonlinear equations can be constructed to calculate out the final point-values of the mid-plane displacements by using the governing equations and relative boundary conditions with HDQ method. Finally, some detailed numerical examples for the anisotropic piezoelectric/composite laminate with the distributed poling directions of piezoelectric layer and fiber orientations of composite layers were studied to validate the developed theoretical analysis model and HDQ numerical method.  相似文献   

13.
The influence of internal pressure on the free vibration behavior of functionally graded (FG) truncated conical shells are investigated based on the first-order shear deformation theory (FSDT) of shells. The initial mechanical stresses are obtained by solving the static equilibrium equations. Using Hamilton’s principle and by including the influences of initial stresses, the free vibration equations of motion around this equilibrium state together with the related boundary conditions are derived. The material properties are assumed to be graded in the thickness direction. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to discretize the governing equations and the related boundary conditions. The convergence behavior of the method is numerically investigated and its accuracy is demonstrated by comparing the results in the limit cases with existing solutions in literature. Finally, the effects of internal pressure together with the material property graded index, the semi-vertex angle and the other geometrical parameters on the frequency parameters of the FG truncated conical shells subjected to different boundary conditions are studied.  相似文献   

14.
A new finite element method for solving the time-dependent incompressible Navier-Stokes equations with general boundary conditions is presented. The two second-order partial differential equations for the vorticity and the stream function are factorized, apart from the non-linear advection term, by eliminating the coupling due to the double specification on the stream function at (a part of) the boundary. This is achieved by reducing the no-slip boundary conditions to projection integral conditions for the vorticity field and by evaluating the relevant quantities involved according to an extension of the method of Glowinski and Pironneau for the biharmonic problem. Time integration schemes and iterative algorithms are introduced which require the solution only of banded linear systems of symmetric type. The proposed finite element formulation is compared with its finite difference equivalent by means of a few numerical examples. The results obtained using 4-noded bilinear elements provide an illustration of the superiority of the finite element based spatial discretization.  相似文献   

15.
针对非均匀Winkler弹性地基上变厚度矩形板的自由振动问题,通过一种有效的数值求解方法——微分变换法(DTM),研究其无量纲固有频率特性。已知变厚度矩形板对边为简支边界条件,其他两边的边界条件为简支、固定或自由任意组合。采用DTM将非均匀Winkler弹性地基上变厚度矩形板无量纲化的自由振动控制微分方程及其边界条件变换为等价的代数方程,得到含有无量纲固有频率的特征方程。数值结果退化为均匀Winker弹性地基上矩形板以及变厚度矩形板的情形,并与已有文献采用的不同求解方法进行比较,结果表明,DTM具有非常高的精度和很强的适用性。最后,在不同边界条件下分析地基变化参数、厚度变化参数和长宽比对矩形板无量纲固有频率的影响,并给出了非均匀Winkler弹性地基上对边简支对边固定变厚度矩形板的前六阶振型。  相似文献   

16.
The numerical method of lines (NUMOL) is a numerical technique used to solve efficiently partial differential equations. In this paper, the NUMOL is applied to the solution of the two‐dimensional unsteady Navier–Stokes equations for incompressible laminar flows in Cartesian coordinates. The Navier–Stokes equations are first discretized (in space) on a staggered grid as in the Marker and Cell scheme. The discretized Navier–Stokes equations form an index 2 system of differential algebraic equations, which are afterwards reduced to a system of ordinary differential equations (ODEs), using the discretized form of the continuity equation. The pressure field is computed solving a discrete pressure Poisson equation. Finally, the resulting ODEs are solved using the backward differentiation formulas. The proposed method is illustrated with Dirichlet boundary conditions through applications to the driven cavity flow and to the backward facing step flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
宋家豪  曹文博  张伟伟 《力学学报》2023,55(5):1195-1205
物理信息神经网络(physics-informed neural network, PINN)是将模型方程编码到神经网络中, 使网络在逼近定解条件或观测数据的同时最小化方程残差, 实现偏微分方程求解. 该方法虽然具有无需网格划分、易于融合观测数据等优势, 但目前仍存在训练成本高、求解精度低等局限性. 文章提出频域物理信息神经网络(frequency domain physics-informed neural network, FD-PINN), 通过从周期性空间维度对偏微分方程进行离散傅里叶变换, 偏微分方程被退化为用于约束FD-PINN的频域中维度更低的微分方程组, 该方程组内各方程不仅具有更少的自变量, 并且求解难度更低. 因此, 与使用原始偏微分方程作为约束的经典PINN相比, FD-PINN实现了输入样本数目和优化难度的降低, 能够在降低训练成本的同时提升求解精度. 热传导方程、速度势方程和Burgers方程的求解结果表明, FD-PINN普遍将求解误差降低1 ~ 2个数量级, 同时也将训练效率提升6 ~ 20倍.   相似文献   

18.
边界约束刚度不确定的结构振动特征值   总被引:2,自引:0,他引:2  
利用摄动法 ,将随机的微分方程和边界条件化为一系列的确定性微分方程和边界条件。运用有限元离散方法 ,推导了统计特征值的二阶摄动近似表达 ,用算例对本文方法进行了说明并和 Monte-Carlo模拟法结果进行了比较  相似文献   

19.
为发展神经网络方法在求解薄板弯曲问题中的应用,基于Kirchhoff板理论,提出一种采用全连接层求解薄板弯曲四阶偏微分控制方程的神经网络方法。首先在求解域、边界中随机生成数据点作为神经网络输入层的参数,由前向传播系统求出预测解;其次计算预测解在域内及边界处的误差,利用反向传播系统优化神经网络系统的计算参数;最后,不断训练神经网络使误差收敛,从而得到薄板弯曲的挠度精确解。以不同边界、荷载条件的三角形、椭圆形、矩形薄板为例,利用所提方法求解其偏微分方程,与理论解或有限元解对比,讨论了影响神经网络方法收敛的因素。研究表明,本文方法对求解薄板弯曲问题的四阶偏微分控制方程具有一定的适应性,其收敛性受多种条件影响。相比有限元,该方法收敛速度较慢,在复杂的边界条件下收敛性不佳,然而其不基于变分原理,无需计算刚度矩阵,便可获得较高的计算精度。  相似文献   

20.
We establish existence, uniqueness and stability of transonic shocks for a steady compressible non-isentropic potential flow system in a multidimensional divergent nozzle with an arbitrary smooth cross-section, for a prescribed exit pressure. The proof is based on solving a free boundary problem for a system of partial differential equations consisting of an elliptic equation and a transport equation. In the process, we obtain unique solvability for a class of transport equations with velocity fields of weak regularity (non-Lipschitz), an infinite dimensional weak implicit mapping theorem which does not require continuous Fréchet differentiability, and regularity theory for a class of elliptic partial differential equations with discontinuous oblique boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号