首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow characteristics of liquid films vertically falling along the outer wall of a circular tube without concurrent gas flow are experimentally studied, and attention is given to the longitudinally developing liquid film flow in the flow direction. Flow measurements are carried out by the methods of needle contact and electric capacity, and the obtained data are statistically processed.There exists a definite difference in flow characteristics such as wave motion patterns, film thicknesses, critical Reynolds number, and so on, depending strongly on the longitudinal distance in the flow direction as well as the liquid film Reynolds number. Measured probability distributions of interfacial waves can be well expressed by the functions of probability distribution statistically well-known as normal, logarithmic normal and gamma distributions. In terms of these functions, interfacial wave patterns are definitely classified over the whole experimental flow regime. As a rule, interfacial wave motion proceeds vigorously with increases of the longitudinal distance and Reynolds number; however, there exists a flow condition that wave fluctuation never grows up but declines regardless of an increase of Reynolds number.  相似文献   

2.
The phenomenon of flooding limits the stability of a liquid film falling along the walls of a tube in which a gas is flowing upward. This paper describes a series of experiments to observe and photograph the flooding process. Flooding in a vertical perspex tube was observed by viewing axially along the tube from the top, and flooding on the walls of a stainless steel rod supported centrally within a perspex tube was observed by viewing normally through the tube walls. The resulting observations show that flooding occurs as a result of the formation and motion of a large disturbance wave on the surface of the liquid film. A simple theoretical treatment of flooding is presented, based on the observations of the flooding disturbance. The resulting equations enable the calculation of the gas velocity and the liquid wave height at flooding, and the predictions are in good agreement with experimental observations reported here and elsewhere.  相似文献   

3.
师晋生 《力学季刊》2006,27(4):693-698
对高粘度液体在等温正弦形波纹壁面上的自由降落与蒸发建立了摄动分析模型。得到了流动的分析解和蒸发传热的数值解。考察了壁面波纹的波幅和波数、液膜表面张力及贝克利数对流动与传热的影响,结果表明,加大波纹的波幅、适当选择波数、减小贝克利数可增强传热,而表面张力对蒸发传热的影响较小。  相似文献   

4.
A crucial point still to be established in the prediction of the film thickness distribution in horizontal annular two-phase flow is the mechanism(s) for transporting liquid from the bottom to the top part of the tube. To resolve this issue, the time-dependent behaviour of the liquid film is studied. Wave characteristics such as velocity and frequency are measured around the circumference. It is inferred from the autospectral density functions of film thickness variation that disturbance waves play an important, but as yet unclear, role in the formation of a liquid film in the top part of the tube. A new mechanism, based on the shape of disturbance waves is proposed.  相似文献   

5.
This study considers the prediction of the degree of asymmetry in the circumferential distribution of the liquid film in the tube cross section of horizontal annular gas–liquid two-phase flow, endemic of the lower region of this flow regime near the stratified-wavy flow transition boundary. Focusing on disturbance waves as the predominant mechanism for transporting the liquid in the annular film from the bottom to the top of the tube to counterbalance the draining effect of gravity, a new prediction method for the degree of asymmetry in the annular liquid film is proposed that outperforms existing correlations. Flow pattern maps for horizontal gas–liquid two-phase flow of frequent use in the design of evaporators and condensers can thus be explicitly updated to account for both symmetric and asymmetric annular flows. The underlying experimental database contains 184 measured liquid film circumferential profiles, corresponding to 1276 local liquid film thickness measurements collected from 15 different literature studies for tube diameters from 8.15 mm to 95.3 mm.  相似文献   

6.
给出一种垂直上升油-气-水三相弹状流压力降的计算模型。该模型考虑弹状流中Taylor气泡周围下降液膜的变化历程。通过油-气-水弹状流的实验研究发现,该模型的数值模拟结果与低压工况下的实验值符合得较好。本模型是计算垂直油-气-水三相弹状流中液相的连续相为水相时的压力降的有效方法。  相似文献   

7.
Heat transfer for single component falling film evaporation has been investigated in a stainless steel single tube falling film evaporator. The tube had a heated length of 2,500 mm. Propylene glycol and cyclohexanol have been used as evaporating media. Liquid film running down the tube, is formed on the inner side of the tube. For the distribution of liquid two different devices were examined. Process equipment was operated in pump-around mode with the distillate being condensed and recycled. Results show that none of the available correlations for heat transfer in falling film evaporation is able to describe the results qualitatively as well as quantitatively. Using different film distribution devices, a significant influence of the Reynolds number for the transition from laminar to turbulent flow is seen. However, differences between experimental results and correlations in literature cannot be explained only by usage of different film distributions, in particular when the correlation is based on measurements with a different tube length. A model approach is presented for cyclohexanol as evaporating medium with a flat weir as film distributor.  相似文献   

8.
The multiphase heat transfer could be enhanced by creating thin liquid film on the wall. The phase separation concept is called due to the separated flow paths of liquid and gas over the tube cross section to yield thin liquid film. Our proposed heat transfer tube consists of an annular region close to the wall and a core region, interfaced by a suspending mesh cylinder in the tube. The heat transfer tube is a multiscale system with micron scale of mesh pores, miniature scale of annular region and macroscale of tube diameter and length. Great effort has been made to link from micron scale to macroscale. The Volume of Fluid (VOF) method simulates air/water two-phase flow for vertical upflow. The three-dimensional system was successfully converted to a two-dimensional one by using three equivalent criteria for mesh pores. The non-uniform base grid generation and dynamic grid adaption method capture the bubble interface. The numerical results successfully reproduce our experimental results. The numerical findings identify the following mechanisms for the enhanced heat transfer: (a) counter-current flow exists with upward flow in the annular region and downward flow in the core region; (b) void fractions are exact zero in the core region and higher in the annular region; (c) the liquid film thicknesses are decreased to 1/6–1/3 of those in the bare tube section; (d) the gas–liquid mixture travels much faster in the annular region than in the bare tube; (e) three-levels of liquid circulation exists: meter-scale bulk liquid circulation, moderate-scale liquid circulation around a single-elongated-ring-slug-bubble, and microliquid circulation following the ring-slug-bubble tails. These liquid circulations promote the fluid mixing over the whole tube length and within the radial direction. The modulated parameters of void fractions, velocities and liquid film thicknesses in the annular region and three-levels of liquid circulation are greatly beneficial for the multiphase heat transfer enhancement.  相似文献   

9.
A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.  相似文献   

10.
A theoretical and experimental study of liquid film flow and quench front propagation on hot vertical surfaces in the presence of single and two-phase upflows is reported. Experiments in which a water jet was used to cool a single rod set in a transparent tube showed that the downward progress of a quench front was significantly retarded or even stopped by an air or steam upflow. Climbing quench fronts were observed which sometimes coexisted with the falling quench fronts, but at surface temperatures above 900°C and flow rates below 0.9 g/s/cm both quench fronts became stationary. Conventional flooding correlations have been shown to overestimate the upflow necessary to cause flow reversal particularly at high surface temperatures. The analysis of film flow shows that a simple interfacial shear model, although incapable of describing the observed wave dynamics, can be used to correlate trends in the available data on rewetting and downcomer penetration. A preliminary theoretical examination of the wave dynamics at the onset of flow reversal is presented based on the Jeffreys theory of growth of finite-amplitude waves.  相似文献   

11.
Slug flow is one of the representative flow regimes of two-phase flow in micro tubes. It is well known that the thin liquid film formed between the tube wall and the vapor bubble plays an important role in micro tube heat transfer. In the present study, experiments are carried out to clarify the effects of parameters that affect the formation of the thin liquid film in micro tube two-phase flow. Laser focus displacement meter is used to measure the thickness of the thin liquid film. Air, ethanol, water and FC-40 are used as working fluids. Circular tubes with five different diameters, D = 0.3, 0.5, 0.7, 1.0 and 1.3 mm, are used. It is confirmed that the liquid film thickness is determined only by capillary number and the effect of inertia force is negligible at small capillary numbers. However, the effect of inertia force cannot be neglected as capillary number increases. At relatively high capillary numbers, liquid film thickness takes a minimum value against Reynolds number. The effects of bubble length, liquid slug length and gravity on the liquid film thickness are also investigated. Experimental correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number is proposed.  相似文献   

12.
Using the local electrical conductivity method, the parameters of the linear waves generated on the surface of a falling liquid film in the presence of a co- or counter-current gas stream are measured. The Reynolds numbers of the fluid and the gas were varied from 24 to 125 and from 0 to 8000, respectively. The results are presented in the form of dispersion relations. In the case of the absence of a gas stream, the results are compared with calculations based on a linear integral theory. It is shown that a gas stream increases the instability of the film and a counter-current gas flow has a greater effect on the wave phase velocity than a co-current flow.  相似文献   

13.
Air-water flow has been studied in a helically coiled tube. The flow pattern transition between stratified and annular flow was examined, and a series of measurements were then taken in the annular flow regime. Local values of the liquid film thickness and liquid film flowrate around the tube periphery were obtained. The variations of these values around the periphery was similar. For most of the cases studied the liquid film flow rate was greatest on the inside of tbe bend, but in some results a subsidiary peak at the outside position was also obtained. There was little net entrained flow because of the centrifugal forces tending to deposit drops very quickly. Attempts to use correlations developed in vertical annular flow at a local position on the tube periphery were not very successful.  相似文献   

14.
The present study investigated fluid dynamics and heat transfer of viscous pure liquids in a falling film evaporator. This is of special benefit as it avoids mass transfer effects on the evaporation behaviour. Experiments at a single-tube glass falling film evaporator were conducted. It allowed a full-length optical film observation with a high-speed camera. Additionally the evaporator was equipped with a slotted weir distribution device. Test fluids provided viscosities ranging from μ = 0.3 to 41 mPa s. The Reynolds number was between 0.7 and 1,930. Surface evaporation and the transition to nucleate boiling were studied to gain information about the film stability at maximum wall superheat. A reliable database for laminar and laminar-wavy viscous single component films was created. The experimental results show a significant enhancement in the wave development due to the film distribution. A wavy flow with different wave velocities was superposed to the film in each liquid load configuration without causing a film breakdown or dry spots on the evaporator tube. It was found that nucleate boiling can be allowed without causing film instabilities over a significant range of wall superheat.  相似文献   

15.
Evolution of excited waves on a viscous liquid film has been investigated experimentally for the annular gas–liquid flow in a vertical tube. For the first time the dispersion relations are obtained experimentally for linear waves on liquid film surface in the presence of turbulent gas flow. Both cocurrent and countercurrent flow regimes are investigated. As an example of comparison with theory, the experimental data are compared to the results of calculations based on the Benjamin quasi-laminar model for turbulent gas flow. The calculation results are found to be in good agreement with experiments for moderate values of film Reynolds number.  相似文献   

16.
This paper reports on an experimental study of saturated flow boiling of R134a inside a circular vertical quartz tube coated with a transparent heater. The inner diameter of the tube was 1.33 mm and the heated length 235.5 mm. The flow pattern at high vapor qualities and the dryout of the liquid film were studied using a high speed CCD camera at the mass fluxes 47.4 and 124.4 kg/m2 s in up flow at 6.425 bar. The heat fluxes ranged from 5 to 13.6 kW/m2 for the lower mass flux and from 20 to 32.4 kW/m2 for the higher mass flux.

The behavior of the flow close to dryout was found to be different at low and high mass flux. At low mass flux the location of the liquid front fluctuated with waves passing high up in the tube. In between the waves, a thin film was formed, slowly evaporating without breaking up.

At high mass flux the location of the liquid front was more stable. In this case the liquid film was seen to break up into liquid streams and dry zones on the tube wall.  相似文献   


17.
One of the most important tasks in development of modern gas turbine combustors is the reduction of NOx emissions. An effective way to reduce the NOx emission is using the lean premixed prevaporization (LPP) concept. An important phenomenon taking place in LPP chambers is the evaporation of thin fuel films. To increase the fuel evaporation rate, the use of microstructured walls has been suggested. The wall microstructures make use of the capillary forces to evenly distribute the liquid fuel over the wall, so that the appearance of uncontrolled dry patches can be avoided. Moreover, the wall structures promote the thin film evaporation characterized by ultra-high evaporation rates. An experimental setup was built for the investigation of thin liquid films falling down on the outer surface of vertical tubes with either a smooth or structured surface. In the first testing phase water is used, fuel like liquids will be used later on. The thin film can be heated from both sides, by hot oil flowing inside the tube, and by hot compressed air flowing in co-current direction to the thin film. The film is partly evaporated along the flow. Results for the wavy film structure at different Reynolds numbers are reported. For theoretical investigations a model describing the hydrodynamics and heat transfer due to evaporation of the gravity- and shear-driven undisturbed liquid film on structured surfaces was developed. For low Reynolds numbers or low liquid mass fluxes the wall surface is only partly covered with liquid and the heat transfer is shown to be governed by the evaporation of the ultra-thin film in the vicinity of the three-phase contact line. A numerical model for the solution of a two-dimensional free-surface flow of a liquid film over a structured wall was also developed. The Navier–Stokes equations are solved using the Volume of Fluid (VOF) technique. The energy equation is included in the model. The model is verified by comparison with data from the literature showing favorable agreement. In particular, the proposed model predicts the formation of capillary waves observed in the experiments. The model is used to investigate the flow of liquid on a structured wall. This calculation is the first step towards the modeling of a three-dimensional wavy flow of a gravity- and shear-driven film along a wall with longitudinal grooves. It is found that due to the Marangoni effect, a circulating flow arises within the cavity, thereby leading to an enhancement in the evaporation rate.  相似文献   

18.
A numerical method for direct simulation of thermal Marangoni effects at dynamically deformable interface of two-phase incompressible fluids is developed. The approach is based on the Volume of Fluid (VOF) method with special focus on the numerical treatment of the temperature surface gradient because of its decisive role as the driving force of the flow. The surface gradient calculation is split into computing its length and direction in order to satisfy the correct thermal boundary condition at the interface without losing mobility of the interface. The method is applied to three different types of thermocapillary flow, namely thermocapillary migration of a droplet in an ambient fluid with linear temperature gradient, thermocapillary convection in a liquid layer under linear temperature gradient along the interface, and Marangoni convection due to Bénard–Marangoni instability. In the first case, different aspects of the dynamics of the migration are considered for validation such as the terminal migration velocity, the initial acceleration and quantification of the wall effects. The simulation also considers high convective heat transfer and covers a wide range of Marangoni numbers up to 5000, where good agreement with both theoretical and experimental results is achieved. In the second case, the convection velocity in the liquid layer is compared with an analytical result. In the final application, pattern formation due to the Bénard–Marangoni instability in a liquid layer in square geometry of small aspect ratio is investigated for realistic Biot number and dynamically deformable fluid interface. The results show good agreement with experiments from literature, where our numerical simulation also predicts cell pattern for a particular aspect ratio which is outside the limitation of the above cited experimental work.  相似文献   

19.
Surface instabilities of thin liquid film flow on a rotating disk   总被引:1,自引:0,他引:1  
 Steady flow of a liquid jet from a nozzle onto the centre of a rotating disk is studied with a streak line method to determine the superficial velocity of the spreading liquid film. Good agreement is found with an asymptotic analysis of the unperturbed flow field. Experimentally, the liquid surface is always perturbed by surface waves which appear as regular spirals, steady in the laboratory system in the low Reynolds number range. It could be shown that wave formation is very sensitive to entrance conditions. Therefore, it is assumed that wave generation is an entrance effect which acts as periodic forcing on the forming liquid film. Wave velocities outside the entrance region are measured and proved to be in good agreement with the prediction of a linear stability theory, as long as the flow rate and entrance perturbations are small. At higher flow rates or stronger disturbances, the radial development of the wave velocities takes on the characteristics predicted by nonlinear stability theories and is in qualitative agreement with experiments performed on an inclined plane. Received: 15 January 1998/Accepted: 8 June 1998  相似文献   

20.
The study considers the prediction of the entrained liquid fraction in adiabatic gas–liquid annular two-phase flow in vertical pipes. Nine empirical correlations have been tested against an experimental data bank drawn together in this study containing 1504 points for 8 different gas–liquid combinations and 19 different tube diameters from 5.00 mm to 57.1 mm. The correlation of Sawant, Ishii and Mishima and the one of Oliemans, Pots and Trompé were found to best reproduce the available data. A new correlating approach, derived from both physical intuition and dimensional analysis and capable of providing further physical insight into the liquid film atomization process, was proposed and worked better than any of the existing methods. This new correlation is based on the core flow Weber number that is also a controlling dimensionless group in determining the wall shear stress and associated frictional pressure gradient of annular flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号