首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Understanding crack growth in fuselage lap joints   总被引:1,自引:1,他引:0  
The problem of multi-site damage and multiple interacting cracks is one experienced by many aircraft manufacturers and operators. This paper focuses on understanding the phenomena, and on developing a predictive capability that can form the engineering framework for maintaining continued airworthiness. To this end the present paper uses a simple formulation based on the Frost–Dugdale crack growth law to study the problem of cracking at fastener holes in fuselage lap joints and shows that the predicted crack growth history is in good agreement with both experimental results and with fleet data.  相似文献   

2.
An energy approach has been used in the study of the coalescence or linkage of multiple cracks in aluminum alloy sheets. The study was motivated by concern for the structural integrity of aging aircraft. Forty reported tests for 2024-T3 aluminum panels with a major crack and several multiple-site damage (MSD) cracks have been analyzed via a simple computational model with a Dugdale–Barenblatt [D.S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100–104; G.I. Barenblatt, in: H.L. Dryden, Th. VonKarman (Eds.), Advances in Applied Mechanics, vol. II, 1962, pp. 55–130] type of plastic or inelastic deformation. For simplicity, the computational model considers only the plastic interaction between the major crack and two symmetrically adjacent MSD cracks in an infinite sheet under remote tensile stress. By following the approach given in [B. Cotterell, J. K. Reddel, Int. J. Fract. 13 (1977) 267–277], the specific work to cause ligament failure is found to be a linear function of the normal extent of the confined plastic region for most tests considered. A few exceptions to this linear relation are attributed to the limitation of the employed computational model. A new criterion and an engineering method to predict crack link-up in an MSD sheet are proposed based on this specific work concept, and they have been demonstrated through application to stiffened panels.  相似文献   

3.
Considered is the long-term cracking of an aging transversally isotropic material containing a Mode I penny-shaped crack under remotely applied tensile stress. The aging material properties are described by the Boltzmann–Volterra’s linear theory for integral operators with non-difference kernels. It applied to wood, concrete, some polymers and rocks. Only the symmetric case is considered where the crack lies in the plane of isotropy. The modified Leonov–Panasyuk–Dugdale’s crack model is used with a constant process zone assuming that the critical opening displacement is the fracture criterion. Volterra’s principle is applied to derive the equations of subcritical crack growth. Numerical calculations are made for subcritical crack growth for the specific example of transversally isotropic material simulating the behavior of reinforced concrete.  相似文献   

4.
The paper proposes a new approach for shape optimisation with fatigue life as the design objective. Conventional designs often incorporate stress optimisation that aims at reducing stress concentrations around a structural boundary by minimising the peak stress. However, this is only an effective and sufficient measure for an ‘ideal’ or ‘flaw-less’ structure. It is a well-known fact that flaws (cracks) are inevitably present in most structures. This emphasises the need to investigate the influence of cracks on optimised shapes. Numerical modelling of cracks using the Finite Element Method requires a fine mesh to model the singularity at crack tips, which makes fracture calculations computationally expensive. Furthermore, for a damage tolerance based optimisation, numerous cracks are to be considered at various arbitrary locations in a structure, and fatigue life evaluation needs to be repeated for each crack at every iteration. This makes the optimisation process extremely computationally inefficient for practical purpose. Moreover, the lack of information concerning crack size, orientation, and location makes the formulation of the optimisation problem difficult. As a result, there has been inadequate research to consider fracture parameters, such as fatigue life, in the optimisation objective. To address this, the paper presents an approach for the shape optimisation of damage tolerant structures with fatigue life as the design constraint.The damage tolerance based optimisation was performed using a number of nonlinear programming algorithms, namely the Broydon-Fletcher-Goldfarb-Shanno (BFGS) method, the Fletcher Reeves (Conjugate Direction) method, and the Sequential Unconstrained Minimisation Technique (SUMT). These methods were extended for optimising the fatigue life in the presence of numerous surface cracks. A significant enhancement in fatigue life was achieved for various crack cases consisting of different initial and final crack sizes. It is shown that the fatigue life optimised shapes can be considerably different from the corresponding stress optimised solution. This emphasises the need to explicitly consider fatigue life as a distinct design objective when optimising damage tolerant structures. A fatigue life optimisation leads to the generation of a ‘near uniform’ fatigue critical surface. The design space near the ‘optimal’ region was found to be relatively flat. This means that the precise identification of the local/global optimum solution is not critical, because a significant structural performance enhancement can be achieved in the ‘near’ optimal region. An additional benefit of fatigue life optimisation is that the resulting optimised shapes may even be lighter than the stress optimised designs. To verify the optimal solutions obtained using the nonlinear programming algorithms, the results were compared with those obtained using a heuristic optimisation method (Biological algorithm). The solutions predicted by both the methods, employing inherently different (gradient-based and gradient-less) algorithms, were found to agree very well.  相似文献   

5.
Effective elastic properties of a defected solid with distributed cohesive micro-cracks are estimated based on homogenization of the Dugdale–Bilby–Cottrell–Swinden (Dugdale–BCS) type micro-cracks in a two dimensional elastic representative volume element (RVE).Since the cohesive micro-crack model mimics various realistic bond forces at micro-scale, a statistical average of cohesive defects can effectively represent the overall properties of the material due to bond breaking or crack surface separation in small scale. The newly proposed model is distinctive in the fact that the resulting effective moduli are found to be pressure sensitive.  相似文献   

6.
7.
论文针对中密度聚乙烯材料(MDPE),采用平板试样进行了I型疲劳裂纹扩展和单次过载下裂纹扩展试验.发现与金属材料类似,单次拉伸过载对聚乙烯(PE)的疲劳裂纹扩展有明显的迟滞作用,降低了裂纹扩展速率.试验还通过变载荷刻线法获取疲劳裂纹扩展前缘的实际形貌和变化规律,对常规变载荷刻线方法进行了调整和验证,其修正方法对高分子材料的疲劳裂纹扩展前缘刻线具有较好的效果.通过观察发现含楔形塑性区的裂尖钝化是裂纹迟滞的主要原因.过载引入的塑性区内残余应力对裂纹迟滞也起了重要作用.论文利用Dugdale模型计算了塑性区尺寸,使用基于残余应力的Wheeler模型对过载迟滞进行了很好的拟合.  相似文献   

8.
Consideration of cohesive microcracks in continuum micromechanics is a challenging task since a lot of applications (such as, e.g., estimation of the stiffness of a microcracked solid) require a priori knowledge of the size of the cohesive zone. The latter, however, can be determined analytically only for the special case of Barenblatt–Dugdale cracks, i.e. for cracks with spatially constant cohesive tractions. Herein, we deal with the general case of spatially non-constant cohesive tractions: Generalizing the Barenblatt–Dugdale approach, we consider that each crack is surrounded by a plane annular cohesive zone characterized by a constitutive softening law (introduced as a power law) relating the vector of cohesive tractions to the displacement discontinuity. The size of this cohesive zone is then estimated using the theorem of minimum potential energy, based on a class of kinematically admissible displacement fields.  相似文献   

9.
Delayed fracture of a laminated composite under tensile loads applied at infinity is studied. The composite consists of alternating elastic and aging viscoelastic layers and contains an internal penny-shaped mode I macrocrack located in parallel to the layers. A modified Leonov–Panasyuk–Dugdale crack model and the critical crack-tip opening criterion constitute a fracture model. The subcritical crack growth equations are derived using the Volterra principle and the method of operator continued fractions. The laws governing delayed fracture are studied for a specific composite material  相似文献   

10.
Similitude: Fatigue cracking in steels   总被引:1,自引:0,他引:1  
The ability to understand and predict fatigue crack growth is central to both the design and the continued operational safety of aircraft, rail, offshore structures, nuclear power plants, and many other engineering assets. However, most current crack growth models are based on the concept of similitude. This paper examines cracking in a range of steels and reveals that the similitude hypothesis is invalid in Region I, where the crack growth rate is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号