首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Care must be taken in preparation and testing of three-dimensional composite photoelastic models. Some problems encountered in modeling the prototype and during model testing are: model-material failure, loss of fringe pattern in slicing, inherent shrinkage response in freezing, inadequate bonding between materials, and modular ratio difficulties. The selection of the correct plastic can eliminate the first four problems, but the correct modular ratio between the matrix and the insert has to be obtained. This investigation illustrated the behavior of commercially manufactured plastics as inserts, with a matrix material of Epon 828 epoxy. The effective moduli of elasticity of these plastics are reported for pure tension and for flexure. Since the manufactured plastics produced varying results, the use of Epon 828 epoxy as an insert was investigated. The inserts were cast in tygon tubing and their curing cycle was altered from that used for the matrix material to produce a different effective modulus of elasticity. The Epon 828 inserts gave excellent results in the beams. The use of the same material for matrix and insert eliminates many of the problems associated with composite three-dimensional photoelasticity.  相似文献   

2.
3.
It has been shown by Pindera and Mazurkiewicz that a new type of scattered-light modulation in the plane of a two-dimensional photoelastic object can be obtained when the stationary integrated photoelastic method developed by Pindera and Straka is applied in a scanning mode and when the transfer function of the photoelastic system satisfies certain conditions. The new type of light modulation, called field of isodynes by the authors, carries information on stress components normal to the direction of propagation of primary beam, and on corresponding total-force component. The points where this stress component is equal to zero can be easily determined. The classical scattered-light modulation along a chosen line represents a cross section of a corresponding isodynes field. It is shown that these features of the method of isodynes make it possible to easily determine the distribution and values of normal stress components at any arbitrary rectilinear cross section, and to check immediately the accuracy of measurements. The experimental determination of contact stresses and contact regions using the method of isodynes is especially simple and elegant.  相似文献   

4.
The formulation of a control-volume-based finite element method (CVFEM) for axisymmetric, two-dimensional, incompressible fluid flow and heat transfer in irregular-shaped domains is presented. The calculation domain is discretized into torus-shaped elements and control volumes. In a longitudinal cross-sectional plane, these elements are three-node triangles, and the control volumes are polygons obtained by joining the centroids of the three-node triangles to the mid-points of the sides. Two different interpolation schemes are proposed for the scalar-dependent variables in the advection terms: a flow-oriented upwind function, and a mass-weighted upwind function that guarantees that the discretized advection terms contribute positively to the coefficients in the discretized equations. In the discretization of diffusion transport terms, the dependent variables are interpolated linearly. An iterative sequential variable adjustment algorithm is used to solve the discretized equations for the velocity components, pressure and other scalar-dependent variables of interest. The capabilities of the proposed CVFEM are demonstrated by its application to four different example problems. The numerical solutions are compared with the results of independent numerical and experimental investigations. These comparisons are quite encouraging.  相似文献   

5.
A finite difference solution algorithm is described for use on two-dimensional curvilinear meshes generated by the solution of the transformed Laplace equation. The efficiency of the algorithm is improved through the use of a full approximation scheme (FAS) multigrid algorithm using an extended pressure correction scheme as smoother. The multigrid algorithm is implemented as a fixed V-cycle through the grid levels with a constant number of sweeps being performed at each grid level. The accuracy and efficiency of the numerical code are validated using comparisons of the flow over two backward step configurations. Results show close agreement with previous numerical predictions and experimental data. Using a standard Cartesian co-ordinate flow solver, the multigrid efficiency obtainable in a rectangular system is shown to be reproducible in two-dimensional body-fitted curvilinear co-ordinates. Comparisons with a standard one-grid method show the multigrid method, on curvilinear meshes, to give reductions in CPU time of up to 93%.  相似文献   

6.
The property of homogeneous and isotropic contraction accompanying the slow polymerization of a photoelastic epoxy resin is utilized to produce a photoelastic model of the same size and shape, at the elevated cure temperature, as the container in which it was cast. Reducing the temperature of the bonded model-container composite structure through the epoxy material transition-temperature range results in frozen-stress photoelastic patterns which correspond to the forces of mutual elastic restraint of differential thermal contraction. The requirements for model-prototype similarity and the model-calibration method are discussed. Particular experiments with calibration specimens and with more complex structures in two and three dimensions are described. The validity of the technique is further demonstrated by correlation with a three-dimensional numerical solution. The properties of a material that was specially developed for use in this new technique are given.  相似文献   

7.
The k − turbulence model and a version of a second-moment closure, modified to include the effect of pressure reflections from a solid surface, have been used as the basis of predictions of the flow that results from the orthogonal impingement of circular and two-dimensional (2-D) jets on a flat surface. Comparison of model predictions has been made with velocity measurements obtained in the stagnation and wall jet regions of the impinging flows. Results, in general, confirm the superiority of the Reynolds stress transport equation model for predicting mean and fluctuating velocities within the latter regions of such flows. In particular, modifications to the second-moment closure to account for the influence of the surface in distorting the fluctuating pressure field away from the wall successfully predict the damping of normal-to-wall velocity fluctuations throughout the impinging flows. In contrast, results derived from the eddy-viscosity-based approach do not, in general, accurately reproduce experimental observations.  相似文献   

8.
This paper describes the apparatus and experimental method which was developed for generalized studies of transient thermal stresses in photoelastic models of many different shapes under a variety of steady-state or transient temperature conditions. It explains how the desired temperature gradients are established in the models and how rapidly changing temperature and stress profiles are monitored during a test. The experimental method is used to study the stresses in a three-dimensional photothermoelastic model subjected to three different temperature sequences. These are: symmetrical cooling of both faces of a thick plate initially at a uniform temperature; heating of one face only of a thick plate initially at a uniform temperature; and heating of only the cold face of a thick plate with an initial linear temperature gradient through its thickness. The last sequence generated temperature profiles which relate to conditions where internal heating is present. The resultant temperature and stress histories for each case are presented graphically and similarity scales are applied to give correct time-stress relations for a typical steel prototype. The magnitude and time of occurrence of the peak stresses on the boundary, as well as in the interior of the plate are found. These stresses are very high and occur comparatively late in each test, at a time when the temperature of the central plane has already started to respond to the changing conditions at the surface. The model was of the sandwich-type construction used by previous investigators, which has a built-in polariscope to isolate a transverse plane for viewing.  相似文献   

9.
An experimental method is described whereby symmetrically loaded cylinders of nonuniform thickness are analyzed using two-dimensional photoelastic models mounted on elastic foundations. The technique is most conveniently applied to ring-stiffened or notched cylinders. The particular model studied simulated a notched cylindrical pressure vessel which had been previously studied with three-dimensional photoelasticity. The stress-concentration factors at the base of the notch, found using both methods, showed excellent agreement. An analysis was also performed which allows estimation of the error involved when a beam-on-elastic-foundation model does not rigorously simulate a cylinder.  相似文献   

10.
A dual-observation method is developed for determining photoelastic parameters in scattered light. Using this method, the intensities of scattered light along two directions of observation, making an angle of 45 deg in a plane normal to the beam, are recorded simultaneously without rotation of either the beam or the model. Photoelastic parameters are evaluated from these records. The theory of the method, the apparatus and techniques, as well as an illustrative experiment, are reported.  相似文献   

11.
The unsteady laminar incompressible mixed convection flow over a two-dimensional body (cylinder) and an axisymmetric body (sphere) has been studied when the buboyancy forces arise from both thermal and mass diffusion and the unsteadiness in the flow field is introduced by the time dependent free stream velocity. The nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. The results indicate that for the thermally assisting flow the local skin friction, heat transfer and mass diffusion are enhanced when the buoyancy force from mass diffusion assists the thermal buoyancy force. But this trend is opposite for the thermally opposing flow. The point of zero skin friction moves upstream due to unsteadiness. No singularity is observed at the point of zero skin friction for unsteady flow unlike steady flow. The flow reversal is observed after a certain instant of time. The velocity overshoot occurs for assisting flows.  相似文献   

12.
13.
This article presents a short review of the three-dimensional transition of wakes from two-dimensional bodies, such as cylinders of various cross-sectional shape, and axisymmetric tori or rings. The nature and sequence of instabilities are compared and contrasted, especially with reference to the base case of the circular cylinder wake. The latter has been the subject of intense interest and scrutiny for well over a century, and has implicitly assumed the role of providing the generic transition scenario for turbulent wake flow. For elongated cylinders with streamlined leading edges, the analogues of the instability modes for a circular cylinder become unstable in the reverse order, which may have implications for the route to wake turbulence for such bodies. As well, the analogue of mode B has a significantly increased relative spanwise wavelength and appears to have a different near-wake structure. At the other extreme, for a normal flat plate, the wake first becomes unstable to a nonperiodic mode that appears distinct from either of the dominant circular cylinder wake modes. For tori, which have a local geometry approaching a two-dimensional circular cylinder for high aspect ratios (ARs), the sequence of transitions with increasing Reynolds number is a strong function of AR. For intermediate ARs, the first occurring wake instability mode is a subharmonic mode. Possible underlying physical mechanisms leading to some of these instabilities are also examined. In particular, support is provided for the role of idealized physical instability mechanisms in controlling wavelength selection and amplification for the dominant wake instability modes. The results presented in this article focus on relevant research undertaken by the Monash group but draws in results from many other international groups.  相似文献   

14.
A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.  相似文献   

15.
An approximate strain-optic law has been derived for photoelastic analysis of orthotropic model materials. Principal-strain difference and the direction of major principal strain can be obtained from only two photoelastic measurements (isochromatic-fringe order and isoclinic angle) by means of this strain-optic law. Limited experiments on models subjected to uniaxial and biaxial stresses indicate good agreement between the experimental results and predictions of the strain-optic law. A parametric study demonstrates that the direction of major principal strain can be predicted to within a few degrees of the exact value and that the principalstrain difference can be predicted within ±20 percent for most practical values of degree of orthotropy and ratio of principal strains. The error levels are quite acceptable considering the significant ease in analysis provided by the new law and the fact that such error levels are not uncommon in experimental investigations.  相似文献   

16.
A ghost fluid Lattice Boltzmann method (GF‐LBM) is developed in this study to represent complex boundaries in Lattice Boltzmann simulations of fluid flows. Velocity and density values at the ghost points are extrapolated from the fluid interior and domain boundary via obtaining image points along the boundary normal inside the fluid domain. A general bilinear interpolation algorithm is used to obtain values at image points which are then extrapolated to ghost nodes thus satisfying hydrodynamic boundary conditions. The method ensures no‐penetration and no‐slip conditions at the boundaries. Equilibrium distribution functions at the ghost points are computed using the extrapolated values of the hydrodynamic variables, while non‐equilibrium distribution functions are extrapolated from the interior nodes. The method developed is general, and is capable of prescribing Dirichlet as well as Neumann boundary conditions for pressure and velocity. Consistency and second‐order accuracy of the method are established by running three test problems including cylindrical Couette flow, flow between eccentric rotating cylinders and flow over a cylinder in a confined channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
18.
A new and simple approach to the digital determination of a photoelastic fringe order using two different loads is proposed. The relationships between the intensity values of light and the isochromatic fringe orders generated from two different loads are derived. The scheme used for the automated determination of the total fringe orders of a full-field photoelastic fringe pattern is described. The usefulness of this method is demonstrated using two isochromatic fringe patterns under two different loads. Extra filters are not needed in the proposed method as in the case of the two-wavelength method.  相似文献   

19.
MacCormack's explicit time-marching scheme is used to solve the full Navier–Stokes unsteady, compressible equations for internal flows. The requirement of a very fine grid to capture shock as well as separated flows is circumvented by employing grid clustering. The numerical scheme is applied for axisymmetric as well as two-dimensional flows. Numerical predictions are compared with experimental data and the qualitative as well as the quantitative agreement is found to be quite satisfactory. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Application of the least-squares method to photoelastic analysis   总被引:2,自引:0,他引:2  
In this paper, the linear and nonlinear leastsquares methods are developed in matrix notation as solution schemes to determine key parameters from whole-field fringe patterns. Examples of the proposed methods to the determination of the photoelastic-fringe constant from a disk in diametral compression and the opening-mode geometric stress-intensity factor from the photoelastic-fringe loops in the neighborhood of a crack tip are presented. In the latter example, the location of the crack tip is treated as an unknown to be determined from the analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号