首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用四步法计算了考虑循环载荷中压应力影响的正交异性钢桥面板的肋-面板焊缝表面裂纹扩展。第一步是基于正交异性钢桥面板的疲劳分析模型,计算肋-面板焊缝处的应力,第二步是通过肋-面板焊缝的三维局部模型,用Schwartz-Neumann交替法计算焊缝表面裂纹的应力强度因子分布,第三步是用二维断裂力学模型和增量塑性损伤模型,计算循环载荷中的压应力对裂纹扩展的影响,第四步是用第二步中的三维裂纹分析结果和第三步中的二维断裂力学模型得到的裂纹扩展公式,计算钢桥面板的肋-面板焊缝表面裂纹扩展。计算结果表明,对应于正交异性钢桥面板肋-面板焊缝处的循环应力,本文所用模型的裂纹尖端反向塑性区导致裂纹扩展率增加50%以上。研究结果为正交异性钢桥面板肋-面板焊缝裂纹的疲劳寿命分析提供了研究基础。  相似文献   

2.
传统的正交异性钢桥面板疲劳损伤评估常采用确定性和可靠性分析方法,忽略了疲劳裂纹扩展的随机性影响,针对这一问题,提出钢桥面板细节疲劳随机扩展分析方法。本文以南溪长江大桥为工程背景,基于长期车辆荷载监测数据,建立了车辆荷载非齐次复合Poisson过程模型。建立钢桥面板有限元模型,采用瞬态分析方法将随机车辆荷载转化成细节疲劳应力,基于线弹性断裂力学理论推导U肋-顶板焊接细节疲劳裂纹扩展时变微分方程,实现宏观关系式疲劳应力幅次数-疲劳损伤至微观表达式应力时间序列-疲劳损伤转换,讨论了车载次序及超载对疲劳裂纹扩展的影响。研究结果表明,非齐次复合泊松过程模型能够较好描述随机车流运营状态,车辆荷载的次序对疲劳裂纹扩展速率的影响不可忽略,重车排序靠前时能够促使疲劳裂纹扩展增速,南溪长江大桥细节点的车辆超载迟滞效应修正系数取值0.804。  相似文献   

3.
随机超载对疲劳裂纹扩展迟滞效应的模拟   总被引:1,自引:0,他引:1  
考虑超载的迟滞效应,对随机超载作用下的疲劳裂纹扩展进行了模拟计算.载荷谱为在基本恒幅循环载荷基础上加入一以泊松流发生的随机超载序列,超载的大小为均匀分布.采用裂纹闭合模型考虑超载的迟滞效应,认为裂纹张开应力在超载引起的塑性区内按线性规律衰减.循环续循环模拟计算出裂纹从初始长度一直到疲劳破坏的扩展曲线.据此,计算了各种超载发生强度和大小下的疲劳裂纹扩展寿命的平均值与标准差。  相似文献   

4.
正交异性钢桥面板疲劳验算时的结构分析   总被引:2,自引:0,他引:2  
童乐为  沈祖炎 《力学季刊》1998,19(3):204-212
正交异性钢板面板直接承受车辆轮荷载的反复作用,容易疲劳开裂,因此疲劳验算是钢桥面板设计中的一项重要任务,疲劳验算首先要涉及应力分析,本文对钢桥面板在一辆重型货车作用下的应力状况进行了现场试验研究,根据试验结果提出简化实用的结构分析模型,在该模型的基础上,结合应用有限元数值计算,能在理论上很好的掌握钢桥面板的应力状况。  相似文献   

5.
正交异性钢板面板直接承受车辆轮荷载的反复作用,容易疲劳开裂,因此疲劳验算是钢桥面板设计中的一项重要任务。疲劳验算首先要涉及应力分析。本文对钢桥面板在一辆重型货车作用下的应力状况进行了现场试验研究,根据试验结果提出了简化实用的结构分析模型。在该模型的基础上,结合应用有限元数值计算,能在理论上很好地掌握钢桥面板的应力状况。  相似文献   

6.
CT试样三维疲劳裂纹扩展数值模拟   总被引:1,自引:0,他引:1  
代鹏  冯淼林 《计算力学学报》2011,28(Z1):33-36,48
在循环载荷下疲劳裂纹的裂纹形貌在稳定扩展区近似为半椭圆形状,因此通过Paris方法根据疲劳裂纹表面尖端点应力强度因子的变化幅值(△K)得到扩展速率与真实的裂纹速率会有误差.为了更好的研究疲劳裂纹的性质,本文通过分析紧凑拉伸(CT)试样的疲劳裂纹扩展后的三维形貌,采用Jiang-Sehitoglu循环塑性模型和疲劳准则以...  相似文献   

7.
为解决随机车载下正交异性钢桥面板疲劳应力谱有限元求解耗时问题,采用拉丁超立方抽样(LHS)与Kriging方法,建立了快速获取随机车流作用下细节疲劳应力谱的LHS-Kriging有限元替代模型,并将此模型应用于南溪长江大桥正交异性钢桥面板疲劳可靠度计算。结果表明,基于LHS-Kriging方法的有限元替代模型, 不需要经过大量车辆荷载的有限元加载,可直接快速获取细节疲劳应力谱;与传统的响应面法(RSM)相比,Kriging法预测的细节等效疲劳应力更符合有限元计算结果;随着交通量增长率的增大,桥梁的疲劳可靠度显著减少;100年后,当交通量增长率为3%和5%时,正交异性桥面板与纵肋焊接处的细节疲劳可靠度小于2。  相似文献   

8.
为解决随机车载下正交异性钢桥面板疲劳应力谱有限元求解耗时问题,采用拉丁超立方抽样(LHS)与Kriging方法,建立了快速获取随机车流作用下细节疲劳应力谱的LHS-Kriging有限元替代模型,并将此模型应用于南溪长江大桥正交异性钢桥面板疲劳可靠度计算。结果表明,基于LHS-Kriging方法的有限元替代模型,不需要经过大量车辆荷载的有限元加载,可直接快速获取细节疲劳应力谱;与传统的响应面法(RSM)相比,Kriging法预测的细节等效疲劳应力更符合有限元计算结果;随着交通量增长率的增大,桥梁的疲劳可靠度显著减少;100年后,当交通量增长率为3%和5%时,正交异性桥面板与纵肋焊接处的细节疲劳可靠度小于2。  相似文献   

9.
本文采用Jiang-Sehitoglu循环塑性模型和多轴疲劳准则对紧凑拉伸式样裂尖的循环塑性变形、裂纹扩展速率和残余应力进行了有限元数值模拟,着重考察了单元的类型和最小单元尺寸对裂尖循环塑性和裂纹扩展速率的影响.紧凑拉伸试样的材料为1070钢,数值模拟采用了线性单元(四节点)和二次单元(八节点)两种单元,裂尖附近有限元单元的最小尺寸从0.007mm到0.24mm不等.文中将裂纹扩展速率的预测值与实验值进行了比较,通过对裂纹扩展速率的比较,确定在疲劳塑性分析时对单元类型和尺寸进行合理选取.  相似文献   

10.
沈珉  杨海元 《实验力学》1999,14(3):302-308
本文针对三种国产材料 Ly11cz、 Ly12cz 铝合金和 18 Mn H P钢,通过实验初步考察了循环塑性预应变和循环载荷压缩部分对疲劳裂纹扩展的影响;采用电测法,测定了两种铝合金材料疲劳裂纹扩展的张开应力和有效应力强度因子幅值比 U。结果表明:(1)材料循环塑性预应变和循环载荷压缩部分,都使疲劳裂纹扩展速率提高;(2)常幅载荷下,在疲劳裂纹稳定扩展阶段,有效应力强度因子幅值比 U 与应力比 R 有关,与裂纹长度a 无关,并依赖于材料的力学性能。  相似文献   

11.
考虑闭合效应和三维应力约束的表面裂纹扩展模拟   总被引:1,自引:0,他引:1  
假定承受Ⅰ型常幅载荷下的表面裂纹在扩展中的形状保持为半椭圆,利用Newman半椭圆表面裂纹应力强度因子公式计算应力强度因子。提出了等效厚度的概念,利用穿透直裂纹的研究结果,考虑表面裂纹扩展中塑性致闭和三维应力约束效应。基于Elber模型建立了三维表面裂纹扩展模型。数值模拟了表面裂纹扩展过程,研究了裂纹形状变化及规律,计算了裂纹扩展寿命。将计算结果与有关试验结果进行了对比,吻合较好。  相似文献   

12.
传统的研究含缺口构件的疲劳的方法是将疲劳启裂和疲劳裂纹扩展两个过程完全独立起来,用不同的方法来模拟,相互间并没有定量的关系。本文是基于最新发展的多轴疲劳损伤理论,建立了一种适用于各种载荷条件下的疲劳启裂和裂纹扩展的普适方法。根据从弹塑性分析中得到的应力应变,确定疲劳损伤模型,建立能够预测疲劳启裂、裂纹扩展速率和扩展方向的新方法。整个模拟可以分为两步:弹-塑性应力分析得到材料的应力应变分布;再运用一个通用的疲劳准则预测疲劳裂纹启裂和裂纹扩展。通过对1070号钢含缺口试件的疲劳全寿命预测,得到了与实验非常吻合的模拟结果。  相似文献   

13.
1.引言变幅载荷下三维裂纹扩展的疲劳寿命估算是十分麻烦的.而三维裂纹体的应力强度因子计算的复杂性,使估算工作更加困难.为了适应三维裂纹体的工程分析,本文采用了权函数.G.C.Sih;J R.Rice.P.M.Besuner和,T.A.Cruse等把权函数用于工程断裂分析中.由于他们采用的权函数只能对内埋或半椭圆表面裂纹的长、短轴方向进行分析,不能求解三维裂纹前沿任意点处的应力强度因子,故无法对三维裂纹进行较合理的疲劳分析.本文采用文[9]形式的权函数求解应力强度因子,并引入当量裂纹长度的概念,导出裂纹扩展过程中△K_I~△c的近似关系,进而采用广义Willenborg模型估算工程构件中表面裂纹在变幅载荷下的剩余疲劳寿命. 2.基本原理和方法  相似文献   

14.
在分析正交异性钢桥面板构造特点的基础上,将轮载影响范围内的桥面板简化为弹性支撑的平面框架,建立了正交异性钢桥面轮载横向效应的解析分析模型,推导了纵肋弹性支撑刚度和车轮荷载集度等效计算方法,提出了桥面板与U肋交接位置处横向弯曲应力的解析公式,讨论并明确了影响桥面板横向弯曲应力峰值的关键敏感影响因素,并以某钢箱梁为例证明了本文算法的合理性。研究发现,本文方法计算得到桥面板与U肋相交位置的横向应力值与有限元结果相差不超过10%,证实了本文算法的正确性,也为正交异性钢桥面的初步设计提供了极大的方便;正交异性钢桥面板的横向轮载应力随U肋厚度和高度增加而增大,但随顶板厚度和横隔板间距增大而减小;相对而言,顶板内横向拉应力受顶板厚度的影响最为显著,对腹板倾角和U肋腹板厚度的变化并不敏感。  相似文献   

15.
针对在基本循环载荷上加入随机超载序列的疲劳裂纹扩展问题,应用裂纹闭合的概念考虑超载的迟滞效应,将延迟时间描述成纯离散型马尔可夫过程。对相应的柯尔莫哥洛夫-费勒微积分方程进行了分步求解,结合疲劳断裂分别出现在基本循环峰载作用时和超载作用时两种情况,计算出不同可靠度下裂纹的扩展寿命,并研究了超载大小和发生强度对扩展寿命的影响。  相似文献   

16.
分析了空心车轴的旋转弯曲载荷的特点,建立了空心轴表面周向半椭圆裂纹的模型,给出了半椭圆裂纹的构形参数定义,即形状比、深度比和裂纹前缘相对位置。采用四分之一20节点等参退化奇异单元,通过有限元计算,模拟裂纹前沿的应力奇异性。在此基础上,计算了裂纹前缘表面点和中心点的应力强度因子随着裂纹扩展深度和旋转角度的变化。计算结果表明,对于给定的裂纹构形,在车轴的一个载荷循环中,裂纹前缘同一相对位置的应力强度因子是不断变化的,不同位置的应力强度因子在达到最大值的角度也是不同的,这就导致了裂纹前缘表面点在一些角度下的扩展是不对称的。这些结果为进一步研究空心轴表面裂纹的扩展路径和寿命提供了参考。  相似文献   

17.
磨损加疲劳载荷下的协同疲劳行为   总被引:1,自引:0,他引:1  
自行研制的摩擦磨损装置与轴向疲劳试验机相互配合,实现GDL-1钢试样在疲劳应力(240~280 MPa)及接触载荷(30 N)作用下摩擦磨损疲劳试验.通过对磨损层厚度的分析,研究试样承受摩擦磨损载荷及拉压疲劳载荷双重作用下的疲劳寿命变化,用SEM扫描电镜观察分析次表层内疲劳裂纹扩展的演变过程,并采用Hertz线弹性理论和Smith接触理论计算分析摩擦表面以下切应力值.结果表明:在磨损疲劳载荷作用下,形变层的流变作用将显著影响疲劳小裂纹扩展方向,渐趋于切应力方向,从而提高试样疲劳寿命.在此基础上,建立了在摩擦磨损疲劳载荷下疲劳裂纹扩展模型.此外,计算可知在距表层深度0.03 mm处切应力最大,0.18 mm以内材料产生塑性变形,导致形变层的形成.  相似文献   

18.
为寻求在设计阶段能较准确地预测重载货车车体焊缝的疲劳寿命评估方法,基于各种标准提供的分析方法对转炉616装甲钢T型焊接接头进行疲劳评估,通过与试验的对比表明,美国ASME标准中的等效结构应力法更能准确预测焊缝的疲劳寿命。为提高某重载运煤敞车车体焊缝的疲劳寿命,建立了包括焊缝在内的敞车车体有限元模型,基于等效结构应力法和AAR标准中的载荷谱,预测了车体关键焊缝的疲劳寿命,其薄弱部位与车体实际发生疲劳裂纹部位基本吻合,依据焊缝的结构应力分布规律的特点,提出的枕梁改进结构可使车体关键焊缝疲劳寿命提高1.7倍。  相似文献   

19.
塑性诱导裂纹闭合是导致裂纹闭合发生的主要机理之一.利用弹塑性有限元法模拟含中心裂纹矩形板试件的疲劳裂纹扩展,并确定疲劳裂纹张开、闭合应力水平.通过计算,考察应力比R、裂纹长度、最大应力强度因子Kmax等对疲劳裂纹张开闭合应力的影响规律.论文阐述了所采用的裂纹扩展模拟方法及确定裂纹张开和闭合应力的原理.采用了等K加载方式,即在裂纹扩展中裂尖应力强度因子的最大值Kmax保持不变(给定R比,最大应力σmax随裂纹长度变化).分析了两种Kmax水平下R比分别为0.3,0,-0.5和-1.0共8种载荷工况.结果表明,对各个载荷工况,用瞬时最大应力σmax正则化的裂纹张开、闭合应力水平σop/σmax和σcl/σmax与裂纹长度无关.等K循环加载比等幅循环加载更有利于分析影响裂纹闭合水平的因素和闭合效应对疲劳裂纹扩展的影响规律,为建立基于裂纹闭合效应的疲劳裂纹扩展规律模型提供了一种新的思路.  相似文献   

20.
CTS试件中复合型疲劳裂纹扩展   总被引:3,自引:0,他引:3  
马世骧  胡泓 《力学学报》2006,38(5):698-704
针对复合型循环载荷作用下的金属构件中的裂纹扩展问题进行了实验分析和理论建模. 首先 采用紧凑拉剪试件(CTS)和 Richard研制的复合型载荷加载装置,对承受复合型循环载荷的裂纹进行了实验研究. 实验选择了两种金属材料试件,分别承受3种形式的复合型循环载荷的作用,在裂纹尖端具 有相同的初始应力场强度的条件下考察复合型循环载荷对裂纹扩展规律的影响. 实验结果表明,疲劳裂纹的扩展速率与加载角度有关. 对于同样金属材料的试件,当裂尖处 初始应力场强度相等时,载荷越接近于II型,裂纹增长速率越快. 采用等效应力强度 因子(I型和II型应力强度因子的组合)、裂纹扩展速率及复合强度等参数,以实验数据为 基础,建立了一个疲劳裂纹扩展模型,用来预测裂纹在不同模式疲劳载荷作用下的扩展速率. 为验证其有效性,该模型被应用于钢制试件的数值模拟计算中. 实验结果与模拟计算曲线保 持一致,表明该模型可以用来估算带裂纹金属构件的寿命.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号