首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The classical Graetz methodology is applied to investigate the thermal development of forced convection in a parallel plate channel filled by a saturated porous medium whose permeability and thermal conductivity vary in the transverse direction. It was found that there is a significant interaction between heterogeneity and thermal development.  相似文献   

2.
The steady laminar boundary layer flow along a flat plate is studied taking into account the variation of fluid viscosity and fluid Prandtl number with temperature. In the forced convection case the plate moves with constant velocity and its temperature varies in power law with x. In the mixed convection case the plate temperature is constant and the fluid moves upwards due to an external free stream and due to buoyancy forces. The results are obtained with the direct numerical solution of the boundary layer equations. The study concerns the wall heat transfer, the wall shear stress and velocity and temperature profiles across the boundary layer. The results of the present work are different from those existing in the literature, which have been obtained with the assumption of constant Pr number.  相似文献   

3.
An analysis is presented for the calculation of heat transfer due to free convective flow along a vertical plate embedded in a porous medium with an arbitrarily varying surface heat flux. By applying the appropriate coordinate transformations and the Merk series, the governing energy equation is expressed as a set of ordinary differential equations. Numerical solutions are presented for these equations which represent universal functions and several computational examples are provided.  相似文献   

4.
5.
Mixed convection along a vertical nonisothermal wedge embedded in a fluid-saturated porous media incorporating the variation of permeability and thermal conductivity is studied. The surface temperature is assumed to vary as a power of the axial coordinate measured from the leading edge of the plate. A nonsimilar mixed convection parameter and a pseudo-similarity variable are introduced to cast the governing boundary layer equations into a system of dimensionless equations which are solved numerically using finite difference method. The entire mixed convection regime is covered by the single nonsimilarity parameter =[1+(Ra x /Pe x )1/2]–1 from pure forced convection (=1) to pure free convection (=0). The problem is solved using nonsimilarity solution for the case of variable wall temperature. Velocity and temperature profiles as well as local Nusselt number are presented. The wedge angle geometry parameter is ranged from 0 to 1.  相似文献   

6.
We analyse the convection flow of a viscous fluid through a horizontal channel enclosing a fully saturated porous medium. The Galerkin finite element analysis is used to discuss the flow and heat transfer through the porous medium using serendipity elements. The velocity, the temperature distributions and the rate of heat transfer are analysed for variations in the governing parameters. The profiles at different vertical levels are asymmetric curves, exhibiting reversal flow everywhere except on the midplane. In a given porous medium, for fixed G or N, the temperature in the fluid region at any position in fluids with a higher Prandtl number, is much higher than in fluids with a lower Prandtl number. Likewise, other parameters being fixed, lesser the permeability of the medium, lower the temperature in the flow field. Nu reduces across the flow at all axial positions, while it enhances along the axial direction of the channel. Nu reduces with decrease in the Darcy parameter D, and thus lesser the permeability of the medium, lesser the rate of heat transfer across the boundary at any axial position of the channel.  相似文献   

7.
The effect of strong heterogeneity on the onset of convection induced by a vertical density gradient in a saturated porous medium governed by Darcy’s law is discussed. The general case, where there is heterogeneity in both the vertical and horizontal directions, and where there is heterogeneity in permeability, thermal conductivity, and applied temperature gradient, is considered. A computer package has been developed to implement an algorithm giving a criterion for instability. This package is applied to the case of a cube partitioned into octants and to the cases where the permeability and thermal conductivity vary continuously across a cube in either a linear or a quadratic manner.  相似文献   

8.
Hydromagnetic free convective flow past an infinite vertical, porous plate in the presence of a uniform transverse magnetic field has been considered taking Hall effects into account. Approximate solutions for the mean velocity, mean temperature and their related quantities are obtained. The influence of various dimensionless parameters is discussed  相似文献   

9.
A Prandtl transformation method is applied to study the transient free convection of non-Newtonian fluids along a wavy vertical plate in the presence of a magnetic field. A simple transformation is proposed to transform the governing equations into the boundary-layer equations and solved numerically by the cubic spline approximation. A simple coordinate transformation is employed to transform the complex wavy surface to a vertical flat plate for a constant wall temperature by the numerical method. The effects of the magnetic field parameter, the wavy geometry and the non-Newtonian nature of the fluids on the flow characteristics and heat transfer are discussed in detail.  相似文献   

10.
The radiation effect in the presence of a uniform transverse magnetic field on steady free convection flow with variable viscosity is investigated. The fluid viscosity is assumed to vary as the reciprocal of a linear function of temperature. Boundary layer equations are derived. The resulting approximate non-linear ordinary differential equations are solved linearly and nonlinearly by shooting methods. The velocity and temperature profiles are shown, and the skin friction on the plate and heat transfer coefficient are presented and discussed. The results of the present study show that in the presence of magnetic field, as the radiation parameter increases the temperature increases, but the velocity decreases.  相似文献   

11.
I.Introducti0nlncustomarytreatmentofforcedconvectiveboundary-layernowoverahorizontalplate,buoyancyforcecomp0nentn0rmaltothesurfaceisneglectedashigher-0rderterms,withtheresultofn0pressurevariationacrosstheboundarylayer-However,thecrosswisepressuregradient,…  相似文献   

12.
This paper investigates mixed free and forced convection of non-Newtonian fluids from a vertical isothermal plate embedded in a homogenous porous medium. A mathematical model is developed based on the modified Darcy's law and boundary-layer approximations, and the exact similarity solution is obtained as well as an integral solution. These two solutions agree within 3% for aiding flows and 10% for opposing flows. It is found that, non-Newtonian characteristics of fluids have appreciable influences on velocity profiles, temperature distributions and flow regimes.  相似文献   

13.
The Kakkonda geothermal reservoir, Japan, is a typical high-temperature liquid-dominated geothermal reservoir, except for its distinctive two-layered temperature structure. It has a shallow permeable reservoir of 230–260°, and a deep less permeable reservoir of 350–360°. Geology and hydrology indicate that the shallow reservoir is one to two orders of magnitude more permeable than the deep reservoir, but that the two reservoirs communicate. It has been widely assumed in engineering and scientific circles that the connection between the two reservoirs is a zero or low permeability barrier to fluid flow. We show that this hypothesis is untenable, based on both physical evidence and numerical simulation. We numerically model the evolution of the geothermal system as it heats after emplacement of an intrusion. The two-layered temperature structure is found to be a consequence of the permeability difference, i.e. the two-layered permeability structure.  相似文献   

14.
The problem of unsteady free convection heat transfer from a one-dimensional (parallel) flow along an infinite vertical flat plate embedded in a thermally stratified fluid-saturated porous medium is considered. Flows are induced by a sudden change in the arbitrary temporal plate temperature. By a formal reduction of the corresponding boundary value problems to well-known Fourier heat conduction problems, analytical solutions of the Darcy and energy equations are obtained. Several special cases are discussed in detail.  相似文献   

15.
Fully developed forced convection in a parallel plate channel filled by a saturated porous medium, with walls held either at uniform temperature or at uniform heat flux, with the effects of viscous dissipation and flow work included, is treated analytically. The Brinkman model is employed. The analysis leads to expressions for the Nusselt number, as a function of the Darcy number and Brinkman number.  相似文献   

16.
Theoretical analyses which incorporate one-dimensional heat conduction along a plate and transverse heat conduction approximations are presented to predict the net heat transfer between laminar film condensation of a saturated vapour on one side of a vertical plate and boundary layer natural convection on the other side. It is assumed that countercurrent boundary layer flows are formed on the two sides. The governing boundary layer equations of this problem and their corresponding boundary conditions are all cast into dimensionless forms by using a non-similarity transformation. Thus the resulting system of equations can be solved by using the local non-similarity method for the boundary layer equations and a finite difference method for the heat conduction equation of the plate. The plate temperature and the heat flux through the plate are repetitively determined until the solutions for each side of the plate match. The predicted results show that the effect of Prc is not negligible for larger values of A* (thermal resistance ratio between natural convecti on side and condensing film side) and the approximation of transverse heat conduction overpredicts the plate temperature for lower values of Rt (thermal resistance ratio between plate and condensing film). However, no significant differences are observed between the two different approximations for higher values of Rt. © by 1997 John Wiley & Sons, Ltd.  相似文献   

17.
An analysis is carried out to study the effects of localized heating (cooling), suction (injection), buoyancy forces and magnetic field for the mixed convection flow on a heated vertical plate. The localized heating or cooling introduces a finite discontinuity in the mathematical formulation of the problem and increases its complexity. In order to overcome this difficulty, a non-uniform distribution of wall temperature is taken at finite sections of the plate. The nonlinear coupled parabolic partial differential equations governing the flow have been solved by using an implicit finite-difference scheme. The effect of the localized heating or cooling is found to be very significant on the heat transfer, but its effect on the skin friction is comparatively small. The buoyancy, magnetic and suction parameters increase the skin friction and heat transfer. The positive buoyancy force (beyond a certain value) causes an overshoot in the velocity profiles.A mass transfer constant - B magnetic field - Cfx skin friction coefficient in the x-direction - Cp specific heat at constant pressure, kJ.kg–1.K - Cv specific heat at constant volume, kJ.kg–1.K–1 - E electric field - g acceleration due to gravity, 9.81 m.s–2 - Gr Grashof number - h heat transfer coefficient, W.m2.K–1 - Ha Hartmann number - k thermal conductivity, W.m–1.K - L characteristic length, m - M magnetic parameter - Nux local Nusselt number - p pressure, Pa, N.m–2 - Pr Prandtl number - q heat flux, W.m–2 - Re Reynolds number - Rem magnetic Reynolds number - T temperature, K - To constant plate temperature, K - u,v velocity components, m.s–1 - V characteristic velocity, m.s–1 - x,y Cartesian coordinates - thermal diffusivity, m2.s–1 - coefficient of thermal expansion, K–1 - , transformed similarity variables - dynamic viscosity, kg.m–1.s–1 - 0 magnetic permeability - kinematic viscosity, m2.s–1 - density, kg.m–3 - buoyancy parameter - electrical conductivity - stream function, m2.s–1 - dimensionless constant - dimensionless temperature, K - w, conditions at the wall and at infinity  相似文献   

18.
Effects of buoyancy forces on forced and free convective flow of water at 4°C past a semi-infinite vertical plate at constant temperature are studied. Flow is assumed to be vertically upwards. Similarity solutions are derived and the resulting equations are solved numerically on a computer. Velocity and temperature profiles are shown graphically and numerical values of the skin friction and the rate of heat transfer are entered in tables. It is observed that the skin friction and the Nusselt number increase with increasing Gr/Re2, where Gr is the Grashof number and Re is the Reynolds number  相似文献   

19.
Chaotic phenomena in the wake of thermal convection flow fields above a heating flat plate were investigated experimentally. A newly developed electron beam fluorescence technique (EBF) was used to simultaneously measure density fluctuation at 7 points in a cross section above the plate. Correlation dimensions, intermittence coefficients, Fourier spectrum have been obtained for different Grashof numbers. Spatial distribution of correlation dimensions are presented. The experimental result shows that there is a certain relationship between the density fluctuation and theGr number. And time-spacial characteristic of chaos evolution is also given. The project supported by the National Natural Science Foundation of China  相似文献   

20.
A numerical solution is described for simultaneous forced convection and radiation in flow between two parallel plates forming ahannel. The front plate is transparent to thermal radiation while the back one is thermally insulated. Analyses for both flow and heat are presented for the case of a non-emitting ‘blackened’ fluid. The governing equations of the stream function and the temperature together with their boundary conditions are presented in non-dimensional expressions. The solution is found to depend on eight dimensionless parameters, namely the ratio of the height of the channel to the distance between the plates, the initial dimensionless temperature, the optical thickness, the absorptivities of both plates, the Reynolds number, the Prandtl number and the heat transfer coefficient from the front plate to the surroundings. The numerical solution is obtained using a finite-difference technique. A study has been made of the effect of the initial temperature of the flow at the channel inlet, the dimensionless loss coefficient from the front plate, the absorptivity of the back plate and the optical thickness, on the temperature distribution in the channel, the heat collection efficiency and the average temperature rise in the channel. Results showed that increasing the optical thickness increases the temperature of the front plate and decreases the temperature of the back plate. Also, increasing the optical thickness increases the efficiency of heat collection, which reaches its maximum asymptotic value at an optical thickness of about 1.5. Moreover, the location of the maximum temperature is found to depend on both the optical thickness and the dimensionless heat loss coefficient from the front plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号