首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Single crystal plasticity based on a representative characteristic length is proposed and introduced into a homogenization approach based on finite element analyses, which are applied to characterization of distinctive yielding behaviors of polycrystalline metals, yield-point elongation, and grain size strengthening. The computational manner for an implicit stress update is derived with the framework of a standard multi-surface plasticity at finite strain, where the evolution of the characteristic lengths are numerically converted from the accumulated slips of all of slip systems by exploiting the mathematical feature of the characteristic length as the intermediate function of the plastic internal variables. Furthermore, a constitutive model for a single crystal reproduces the stress–strain curve divided into three parts. Using two-scale finite element analysis, the macroscopic stress–strain response with yield-point elongation under a situation of low dislocation density is reproduced. Finally, the grain size effect on the yield strength is analyzed with modeling of the grain boundary in the context of the proposed constitutive model and is discussed from both macroscopic and microscopic views.  相似文献   

2.
In this paper, an experimental investigation and a constitutive modeling of the mechanical response of an interstitial-free (IF) steel over a wide range of strain rates (from 0.001/s to 750/s) are presented. Tensile tests at relatively high strain rates, exceeding 100/s, are performed at an initial room temperature, using the so-called one bar technique developed on the basis of the Hopkinson bar method. At a high strain rate, a distinct upper yield limit is observed, and the subsequent flow stress increases remarkably. Furthermore, the ductility is reduced significantly in comparison to the case of low strain rate tension. In order to express such a complicated material response of IF steel, we develop a new constitutive model that takes into account effects of a change in the mobile dislocation density and thermal softening. The model can be easily applicable to large-scale engineering computations, because it is macroscopically formulated. We try to reproduce the tensile response including a diffuse neck formation at high strain rates, using the proposed constitutive model and finite element method. The results indicate that a change in the mobile dislocation density, together with thermal softening, has substantial effects on apparent work hardening behavior at high strain rates, although the change in the mobile dislocation density is transcribed at macroscopic scale in the model. Finally, we discuss characteristics of true stress–true strain curves at various strain rates, and their correlation with the plastic instability behavior.  相似文献   

3.
郭宇  庄茁  李晓雁 《力学学报》2006,38(3):398-406
对纳米尺度单晶铜的剪切变形进行了分子动力学(MD)模拟.模拟结果表明,单晶铜的剪切屈服应力随模型几何尺度的增大而降低,而随着应变率的增大而升高.基于位错形核理论,建立了一个修正的指数法则来描述面心立方(FCC)金属的尺度效应,该法则与较大尺度范围内(从纳米到毫米以上)的数值模拟结果以及实验数据都符合得比较好.另外,MD模拟中发现单晶铜存在一个临界应变率,当施加的应变率小于该值,剪切屈服应力几乎不随应变率变化而变化;当大于该值,剪切屈服应力会随着应变率的增加迅速升高.最后根据模拟的结果建立了单晶铜和单晶镍塑性屈服强度的应变率响应模型.  相似文献   

4.
This paper addresses a constitutive model of cyclic plasticity with special emphasis on the yield-point phenomena. In order to point out the deformation characteristics of a mild steel, four types of experiments were conducted, i.e. uniaxial tension at several crosshead speeds, cyclic straining, and stress- and strain-controlled ratchetting. A viscoplastic constitutive model of cyclic plasticity is proposed on the premise that the phenomena of sharp yield point and the subsequent abrupt yield drop result from rapid dislocation multiplication and the stress-dependence of dislocation velocity. Besides, cyclic plasticity behavior, such as the Bauschinger effect, cyclic hardening/softening characteristics and ratchet-strain accumulation, is described by some kinematic and isotropic hardening rules. The cyclic stress–strain responses predicted by this model agree well with the corresponding experimental results.  相似文献   

5.
FeCrNi合金静动态物理本构模型研究   总被引:1,自引:0,他引:1  
潘晓霞  余勇  谭云  陈裕泽 《力学学报》2008,40(3):407-412
以金属材料塑性变形的位错动力学为基础,将FeCrNi合金的流动应力分解为非热应力和热激活应力两部分.通过对该合金屈服应力随温度变化特性、屈服应力的应变速率特性、孪晶组织的温度特性及位错组态的应变速率特性进行分析,认为非热应力不只是应变的函数,还与温度和应变速率相关,因此对Johnson-Cook模型方程形式进行修正以描述非热应力. 同时认为影响热激活应力的微结构参数主要为位错阻碍间距\Deltal, 定义并推导出表征\Delta l演化的g函数的表达式,将其引入Kocks的热激活方程,从而建立FeCrNi合金的物理型本构模型.该模型初步实现了对FeCrNi合金从室温到高温、从准静态到动态塑性变形行为的描述.   相似文献   

6.
A phenomenological macroscopic plasticity model is developed for steels that exhibit strain-induced austenite-to-martensite transformation. The model makes use of a stress-state dependent transformation kinetics law that accounts for both the effects of the stress triaxiality and the Lode angle on the rate of transformation. The macroscopic strain hardening is due to nonlinear kinematic hardening as well as isotropic hardening. The latter contribution is assumed to depend on the dislocation density as well as the current martensite volume fraction. The constitutive equations are embedded in the framework of finite strain isothermal rate-independent anisotropic plasticity. Experimental data for an anisotropic austenitic stainless steel 301LN is presented for uniaxial tension, uniaxial compression, transverse plane strain tension and pure shear. The model parameters are identified using a combined analytical–numerical approach. Numerical simulations are performed of all calibration experiments and excellent agreement is observed. Moreover, we make use of experimental data from ten combined tension and shear experiments to validate the proposed constitutive model. In addition, punch and notched tension tests are performed to evaluate the model performance in structural applications with heterogeneous stress and strain fields.  相似文献   

7.
An elastoplastic constitutive model for large strains is proposed using three kinds of equi-plastic strain surfaces, a yield surface and two other surfaces from which the power law for stress–strain relation is confined. The prediction by the model gives no oscillatory stress in simple shear, even though the Jaumann stress rate is utilized. Torsion with free- and fixed end conditions are also predicted by the model, which shows good agreement with experimental results of SUS 304.  相似文献   

8.
The combined effect of dislocation source strength τs, dislocation obstacle strength τobs, and obstacle spacing Lobs on the yield stress of single crystal metals is investigated analytically and numerically. A continuum theory of dislocation pileups emanating from a finite-strength source and impinging on asymmetric obstacles gives a closed-form expression for the yield stress. A 2d discrete dislocation model for a single-source/obstacle problem agrees well with the analytic model over a wide range of material parameters. Discrete dislocation simulations for a full tensile bar with statistically distributed sources and obstacles show that the distribution of obstacles plays a significant role in controlling the yield stress. Over a wide range of parameters, the simulations agree well with the analytic model using an effective obstacle spacing Lobs* chosen to capture the strength-controlling statistically weaker pileup configurations. The analytic model can thus be used to guide the choice of source and obstacle parameters to obtain a desired yield stress. The model also shows how different combinations of internal source and obstacle parameters can generate the same macroscopic yield stress, and points to several internal length scales that could relate to size-dependent plasticity phenomena.  相似文献   

9.
The present study aims at characterizing the post-necking strain hardening behavior of three sheet metals having different hardening behavior. Standard tensile tests were performed on sheet metal specimens up to fracture and heterogeneous logarithmic strain fields were obtained from a digital image correlation technique. Then, an appropriate elasto-plastic constitutive model was chosen. Von Mises yield criterion under plane stress and isotropic hardening law were considered to retrieve the relationship between stress and strain. The virtual fields method (VFM) was adopted as an inverse method to determine the constitutive parameters by calculating the stress fields from the heterogeneous strain fields. The results show that the choice of a hardening law which can describe the hardening behavior accurately is important to derive the true stress–strain curve. Finally, post-necking hardening behavior was successfully characterized up to the initial stage of localized necking using the VFM with Swift and modified Voce laws.  相似文献   

10.
A combined finite element (FE) simulation and discrete dislocation dynamics (DD) approach has been developed in this paper to investigate the dynamic deformation of single-crystal copper at mesoscale. The DD code yields the plastic strain based on the slip of dislocations and serves as a substitute for the 3D constitutive form used in the usual FE computation, which is implemented into ABAQUS/Standard with a user-defined material subroutine. On the other hand, the FE code computes the displacement and stress field during the dynamic deformation. The loading rate effects on the yield stress and the deformation patterning of single-crystal copper are investigated. With the increasing of strain rate, the yield stress of single-crystal copper increases rapidly. A critical strain rate exists in each single-crystal copper block for the given size and dislocation sources, below which the yield stress is relatively insensitive to the strain rate. The dislocation patterning changes from non-uniform to uniform under high-strain-rate. The shear stresses in the bands are higher than that in the neighboring regions, which are formed shear bands in the crystal. The band width increases with the strain rate, which often take places where the damage occurs.  相似文献   

11.
The paper presents a numerical model for simulating a granular flow and its deposition on an inclined bed. A granular material is described as an elastic–plastic continuum and its constitutive law, namely Hooke's law, is discretized on the basis of the Smoothed Particle Hydrodynamics (SPH) method. In the equation of motion, however, the artificial viscosity, which is widely used in SPH, is not applied. The diffusive term derived from Hooke's law is introduced with a diffusion coefficient that varies depending on the stress and strain rate based on the Drucker–Prager yield function. The model is verified and validated through two numerical tests. It is shown that the basic elastic–perfectly plastic characteristics are reproduced with a simple shearing test. The effects of the diffusion coefficient and spatial resolution are investigated to show the validity of the model. In the simulation of the gravitational collapse of a granular column on an inclined bed, the performance of the model from the final deposition profile, the time history of the front position of the granular flow, the maximum runout distance, and the velocity profile are investigated for several cases of basal inclinations. The calculated results show good agreement with the experimental results.  相似文献   

12.
13.
超高强度钢AF1410塑性流动特性及其本构关系   总被引:1,自引:0,他引:1  
在本文中,为揭示超高强度钢AF1410的塑性流动性,并研究其塑性流动本构关系,利用CSS4410电子万能试验机和改进的Hopkinson拉压杆技术,对AF1410钢在温度从100K到600K,应变率从0.001/s到2000/s,塑性应变超过20%的塑性流动特性进行了试验研究。结果表明,拉伸加载下AF1410钢屈服强度低于压缩屈服强度,且随应变率增加,拉压屈服强度差值越来越大;该材料塑性流动应力对应变率敏感性低,而对温度较为敏感;随应变率的提高,该材料拉伸失效应变减小,但温度对失效应变无明显影响。最后基于位错的运动学关系,借助试验数据,获得了AF1410钢的塑性流动物理概念本构模型,并通过与经典J-C模型的结果对比对该物理概念本构模型进行了评估分析,表明该物理概念本构模型在较宽温度和应变率范围能较好的预测AF1410钢的塑性流动应力。  相似文献   

14.
一般加载规律的弹塑性本构关系   总被引:1,自引:1,他引:0  
将有关文献给出一般加载规律一维全量理论的简单模型推广到一般加载规律的一维增量理论,进而推广到一般加载规律的多维增量理论,在此基础上,建立了推导一般加载规律的多维增量理论的本构关系的一种途径。应用这种途径,从应力空间的加载函数和应变空间的加载函数出发,推导了等向强化材料和被加热的等向强化材料的一般加载规律的弹塑性本构关系的两种表示形式。理论和实例均表明,这种途径对等向强化材料、随动强化材料和理想弹塑性材料均适用。  相似文献   

15.
The axial compressive failure of aligned fiber composites triggered by kink band instabilities is the topic of investigation herein. Particular emphasis is put on the accurate prediction of the post-failure regime, where fiber composites are known to exhibit substantial post-failure strength. In this regard, a previous analytical model, based on geometric relationships and energy principles, is enhanced by consistently taking into account material non-linearities. Therefore, a non-linear constitutive law is introduced herein based on a newly developed exponential formulation. This non-linear constitutive law is subsequently implemented into the stress–strain response in interlaminar shearing as well as the compression response. The model enhancements are validated against published experimental data yielding excellent comparisons. Furthermore, the relevance of modeling non-linear material behavior in interlaminar dilation and bending is assessed using a bilinear constitutive law. However, implementing non-linear material behavior does not yield any improvements and can therefore be neglected.  相似文献   

16.
在金属晶体材料高应变率大应变变形过程中,存在强烈的位错胞尺寸等微观结构特征长度细化现象,势必对材料加工硬化、宏观塑性流动应力产生重要影响。基于宏观塑性流动应力与位错胞尺寸成反比关系,提出了一种新型的BCJ本构模型。利用位错胞尺寸参数,修正了BCJ模型的流动法则、内变量演化方程,引入了考虑应变率和温度相关性的位错胞尺寸演化方程,建立了综合考虑微观结构特征长度演化、位错累积与湮灭的内变量黏塑性本构模型。应用本文模型,对OFHC铜应变率在10-4~103 s-1、温度在298~542 K、应变在0~1的实验应力-应变数据进行了预测。结果表明:在较宽应变率、温度和应变范围内,本文模型的预测数据与实验吻合很好;与BCJ模型相比,对不同加载条件下实验数据的预测精度均有较大程度的提高,最大平均相对误差从9.939%减小为5.525%。  相似文献   

17.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

18.
The effect of non-locality on the Peierls stress of a dislocation, predicted within the framework of the Peierls-Nabarro model, is investigated. Both the integral formulation of non-local elasticity and the gradient elasticity model are considered. A modification of the non-local kernel of the integral formulation is proposed and its effect on the dislocation core shape and size, and on the Peierls stress are discussed. The new kernel is longer ranged and physically meaningful, improving therefore upon the existing Gaussian-like non-locality kernels. As in the original Peierls-Nabarro model, lattice trapping cannot be captured in the purely continuum non-local formulation and therefore, a semi-discrete framework is used. The constitutive law of the elastic continuum and that of the glide plane are considered both local and non-local in separate models. The major effect is obtained upon rendering non-local the constitutive law of the continuum, while non-locality in the rebound force law of the glide plane has a marginal effect. The Peierls stress is seen to increase with increasing the intrinsic length scale of the non-local formulation, while the core size decreases accordingly. The solution becomes unstable at intrinsic length scales larger than a critical value. Modifications of the rebound force law entail significant changes in the core configuration and critical stress. The discussion provides insight into the issue of internal length scale selection in non-local elasticity models.  相似文献   

19.
In this paper a finite deformation constitutive model for rigid plastic hardening materials based on the logarithmic strain tensor is introduced. The flow rule of this constitutive model relates the corotational rate of the logarithmic strain tensor to the difference of the deviatoric Cauchy stress and the back stress tensors. The evolution equation for the kinematic hardening of this model relates the corotational rate of the back stress tensor to the corotational rate of the logarithmic strain tensor. Using Jaumann, Green–Naghdi, Eulerian and logarithmic corotational rates in the proposed constitutive model, stress–strain responses and subsequent yield surfaces are determined for rigid plastic kinematic and isotropic hardening materials in the simple shear problem at finite deformations.  相似文献   

20.
Cottrell-Stokes-type experiments are performed with AA6022, a heat treatable commercial Al alloy, at different stages of precipitation. It is shown that the ratio of the flow stress at given temperature and that extrapolated to 0 K, measured at given material state, is independent of the strain and of the precipitation state. The ratio depends only on temperature and strain rate. However, when probed using strain rate jump experiments, the Cottrell-Stokes law appears not to be fulfilled in any of these materials, and the strain rate sensitivity parameter depends on the precipitation state. A model based on the interaction of dislocations with populations of obstacles of various types is used to provide an interpretation of the Cottrell-Stokes law. The model indicates that as the dislocation velocity increases, the effective Cottrell-Stokes ratio in systems with various obstacle compositions takes values in a narrow range close to the critical value of 1 (i.e. “microstructure” insensitivity). Conversely, the model suggests that the Cottrell-Stokes ratio should become more sensitive to the microstructure under creep conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号