首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
This paper reports on an experimental study of saturated flow boiling of R134a inside a circular vertical quartz tube coated with a transparent heater. The inner diameter of the tube was 1.33 mm and the heated length 235.5 mm. The flow pattern at high vapor qualities and the dryout of the liquid film were studied using a high speed CCD camera at the mass fluxes 47.4 and 124.4 kg/m2 s in up flow at 6.425 bar. The heat fluxes ranged from 5 to 13.6 kW/m2 for the lower mass flux and from 20 to 32.4 kW/m2 for the higher mass flux.

The behavior of the flow close to dryout was found to be different at low and high mass flux. At low mass flux the location of the liquid front fluctuated with waves passing high up in the tube. In between the waves, a thin film was formed, slowly evaporating without breaking up.

At high mass flux the location of the liquid front was more stable. In this case the liquid film was seen to break up into liquid streams and dry zones on the tube wall.  相似文献   


2.
Micro capillary pumped loop system for a cooling high power device   总被引:1,自引:0,他引:1  
This work discusses the operation of a capillary-driven two-phase loop, configured on a micro capillary pumped loop (MCPL) system without an external power supply but capable of automatic heat transmission. The MCPL device, fabricated using MEMS (microelectricomechanical system) technology, was tested and yielded the following results: first, the proposed design of a new MCPL system with a water reservoir operating at low pressures is feasible and requires no additional power supply and instead relies on automatic heat transmission. Second, the issue of depriming in a MCPL was effectively controlled, the endurance of MCPL for the depriming problem can be executed by yielding input heat fluxes of 185.2 W/cm2 at an evaporator temperature of 165 °C, thus revealing that this model provides excellent cooling performance. Third, the effective operation range was determined and its successful operation was confirmed for MCPL. The ease of starting up increased with the temperature of the reservoir. Finally, two-phase tension that originated in the groove structures in the evaporator and condenser was confirmed to control the movement of the fluids throughout the system and verified to be effective in improving cooling efficiency.  相似文献   

3.
An experimental investigation of thermocapillary deformations in a film of 10% ethyl alcohol solution in water, flowing down a plate with a heater of length 6.7 mm and width 68 mm, is performed. Heating of the film results in the formation of a horizontal liquid bump at the top edge of the heater. On the heater the flow divides into vertical rivulets with a thin film between them. Film deformations in the bump and the thin film between the rivulets are investigated. Local film thickness is measured by means of a double-fiber optical probe. The method is based on the dependence of the intensity of reflected light on the distance between the probe and the reflecting surface. The measurement results are compared to those previously obtained using the schlieren method. The experiment is controlled by three parameters. They are, with their respective values, the plate inclination angle (4–90°), the Reynolds number (0.15–62) and the heat flux density (0–4.5 W/cm2).  相似文献   

4.
Temperature measurement of a curved surface using thermographic phosphors   总被引:1,自引:0,他引:1  
An optical technique for surface temperature measurement based on the fluorescent emission of rare earth ion-doped phosphors was demonstrated in an experiment with a heated cylinder in crossflow. In this experiment, a uniform heat flux was imposed by applying a constant voltage across the thin stainless steel cylinder surface to produce surface temperatures between 24°C and 55°C. The fluorescent emission of a thermographic phosphor, lanthanum oxysulfide doped with europium (La202S:Eu3+) deposited on the surface, was recorded to determine the temperature distribution at the curved surface. When excited by ultraviolet radiation, the phosphor emits a spectrum containing certain emission lines, the intensities of which vary with temperature. For a single temperature-sensitive line, ratios of the intensity at a reference temperature to the intensity at different temperatures were correlated as a function of surface temperature. The use of intensity ratio correlations avoids complications due to geometric (viewing angle) effects. Digitized images of the cylinder permitted calculation of surface temperatures and local Nusselt numbers. Differences between surface temperatures measured by calibrated thermocouples and temperatures determined from the phosphor technique were at most 1.2°C.  相似文献   

5.
Based on experimental investigations the present study evaluates instability and heat transfer phenomenon under condition of periodic flow boiling of water and ethanol in parallel triangular micro-channels. Tests were performed in the range of hydraulic diameter 100–220 μm, mass flux 32–200 kg/m2 s, heat flux 120–270 kW/m2, vapor quality x = 0.01–0.08. The period between successive events depends on the boiling number and decreases with an increase in the boiling number. The initial film thickness decreases with increasing heat flux. When the liquid film reached the minimum initial film thickness CHF regime occurred. Temporal variations of pressure drop, fluid and heater temperatures were periodic. Oscillation frequency is the same for the pressure drop, for the fluid temperature at the outlet manifold, and for the mean and maximum heater temperature fluctuations. All these fluctuations are in phase. The CHF phenomenon is different from that observed in a single channel of conventional size. A key difference between micro-channel heat sink and single conventional channel is amplification of parallel-channel instability prior to CHF. The dimensionless experimental values of the heat transfer coefficient are presented as the Nusselt number dependence on the Eotvos number and the boiling number.  相似文献   

6.
In the present experimental study, a correlation is proposed to represent the heat transfer coefficients of the boiling flows through horizontal rectangular channels with low aspect ratios. The gap between the upper and the lower plates of each channel ranges from 0.4 to 2 mm while the channel width being fixed to 20 mm. Refrigerant 113 was used as the test fluid. The mass flux ranges from 50 to 200 kg/m2 s and the channel walls were uniformly heated up to 15 kW/m2. The quality range covers from 0.15 to 0.75 and the flow pattern appeared to be annular. The modified Lockhart–Martinelli correlation for the frictional pressure drop was confirmed to be within an accuracy of ±20%. The heat transfer coefficients increase with the mass flux and the local quality; however the effect of the heat flux appears to be minor. At the low mass flux condition, which is more likely to be with the smaller gap size, the heat transfer rate is primarily controlled by the liquid film thickness. A modified form of the enhancement factor F for the heat transfer coefficient in the range of ReLF200 well correlates the experimental data within the deviation of ±20%. The Kandlikar's flow boiling correlation covers the higher mass flux range (ReLF>200) with 10.7% mean deviation.  相似文献   

7.
A new PCHE with an S-shaped fin configuration was applied to a hot water supplier in which cold water of 7 °C is warmed to 90 °C through heat-exchange with supercritical CO2 of 118 °C and 11.5 MPa pressure. The fin and plate configurations were determined using 3D CFD simulations for the CO2 side and H2O side and the thermal–hydraulic performance of hot water supplier was evaluated. Compared with a hot water supplier that is currently used in a residential heat pump, the new PCHE provides about 3.3 times less volume; and lower pressure drop by 37% in the CO2 side and by 10 times in H2O side.  相似文献   

8.
The temperature pulsations and wave characteristics in water film flow along a vertical plate with a heater are investigated. Using an infrared scanner, the temperature field on the film surface is measured for various heat flux densities on the heater. Experimental data on the variation of the temperature with time on a local segment of the liquid film surface during wave transmission are obtained. In the absence of a heat flux the data obtained are in good agreement with the results of other researchers for an isothermal liquid film. When the down-flowing liquid is heated, the thermocapillary forces lead to the formation of rivulets and a thin film between them. It is shown that in the inter-rivulet zone the relative wave amplitude increases due to the action of the thermocapillary forces.  相似文献   

9.
Two-dimensional (circumferential and axial) wall temperature distributions were measured for top-heated coolant channels with internal geometries that include smooth walls, spiral fins and both twisted tape and spiral fins. Freon-71 was the working fluid. The flow regimes studied were single-phase, subcooled flow boiling, and stratified flow boiling. The inside diameter of all test sections was near 10.0 mm. Circumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a volumetric flow rate of 4.738 x 10−5m3/s, 0.19 MPa (absolute) exit pressure, and 22.2°C inlet subcooling. Overall (averaged over the entire channel) heat transfer coefficients were compared for the various channel geometries. This comparison showed that the channel with large-pitch spiral fins had higher heat transfer coefficients at all power levels. However, the results appear to indicate that if the twist ratio (ratio of the twisted tape period to the inside diameter) is decreased, the configuration employing both fins and a twisted tape will have had greater enhancements.  相似文献   

10.
Most of the studies on gas turbine blade internal channels have focused on constant cross-sectional areas from entrance to turn. Gas turbine blades are typically tapered from hub to tip to reduce thermal loading. These channels exist inside high-performance turbine blades for providing effective cooling to the blade external surface, which is exposed to high-temperature gas flow. Heat transfer measurements are presented for both the straight and tapered square channels including the turn region with and without rib turbulators. The straight channels will have a uniform square cross-section area of 5.08×5.08 cm2. For the tapered channels, the square cross-sectional area reduces from entrance into the first pass (5.08×5.08 cm2) to the 180° turn (2.54×2.54 cm2) and then expands from turn to exit in the second pass (5.08×5.08 cm2). The heat transfer results for tapered channels are compared with results for straight channels. Results show that heat transfer in tapered smooth channels is enhanced significantly due to flow acceleration in the first pass, a combination of taper and turn and flow deceleration in the second pass. Overall, the tapered channels significantly produce higher heat transfer enhancements compared to the Dittus–Boelter correlation for fully developed flow especially in the after-turn region. Based on the results from this study, the heat transfer inside tapered channels in the after-turn region cannot be predicted by calculating local Reynolds numbers and using straight channel heat transfer correlations. However, the first pass Nusselt number enhancement distributions are similar for both straight and tapered channels when normalized using the local Nusselt number based on local Reynolds number. The difference in the after-turn region between the straight and tapered channels is reduced with the addition of rib turbulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号