首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An analysis is performed to present a new self-similar solution of unsteady mixed convection boundary layer flow in the forward stagnation point region of a rotating sphere where the free stream velocity and the angular velocity of the rotating sphere vary continuously with time. It is shown that a self-similar solution is possible when the free stream velocity varies inversely with time. Both constant wall temperature and constant heat flux conditions have been considered in the present study. The system of ordinary differential equations governing the flow have been solved numerically using an implicit finite difference scheme in combination with a quasilinearization technique. It is observed that the surface shear stresses and the surface heat transfer parameters increase with the acceleration and rotation parameters. For a certain value of the acceleration parameter, the surface shear stress in x-direction vanishes and due to further reduction in the value of the acceleration parameter, reverse flow occurs in the x–component of the velocity profiles. The effect of buoyancy parameter is to increase the surface heat transfer rate for buoyancy assisting flow and to decrease it for buoyancy opposing flow. For a fixed buoyancy force, heating by constant heat flux yields a higher value of surface heat transfer rate than heating by constant wall temperature.  相似文献   

2.
A non-magnetic solid object placed in a magnetically responsive fluid in the presence of a magnetic field gradient experiences a net buoyancy force of magnetic origin. A procedure is developed to account for the effects of magnetic field distortion due to the difference of magnetic permeability between the fluid and the solid and non-zero dependence of fluid magnetization on magnetic field strength. This procedure gives an expression for the magnetic buoyancy force correct to first order in the dimensionless magnetization of the fluid and in the dimensionless variation of fluid magnetization across the object. Calculations are performed for a sphere, cylinder and plate in an applied magnetic field where the field and field gradient are either aligned or at right angles in order to give an indication of the range of force variation due to a change of shape and due to a change of applied field geometry. Variations on the order of 10% can be expected in typical applications.  相似文献   

3.
 The steady mixed convection flow over a vertical wedge with a magnetic field embedded in a porous medium has been investigated. The effects of the permeability of the medium, surface mass transfer and viscous dissipation on the flow and temperature fields have been included in the analysis. The coupled nonlinear partial differential equations governing the flow field have been solved numerically using the Keller box method. The skin friction and heat transfer are found to increase with the parameters characterizing the permeability of the medium, buoyancy force, magnetic field and pressure gradient. However the effect of the permeability and magnetic field on the heat transfer is very small. The heat transfer increases with the Prandtl number, but the skin friction decreases. The buoyancy force which assists the forced convection flow causes an overshoot in the velocity profiles. Both the skin friction and heat transfer increase with suction and the effect of injection is just the reverse. Received on 21 May 1999  相似文献   

4.
M. Kumari  G. Nath 《Meccanica》2014,49(5):1263-1274
The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.  相似文献   

5.
Combined heat and mass transfer in free, forced and mixed convection flows along a porous wedge with internal heat generation in the presence of uniform suction or injection is investigated. The boundary-layer analysis is formulated in terms of the combined thermal and solute buoyancy effect. The flow field characteristics are analyzed using the Runge-Kutta-Gill method, the shooting method, and the local nonsimilarity method. Due to the effect of the buoyancy force, power law of temperature and concentration, and suction/injection on the wall of the wedge, the flow field is locally nonsimilar. Numerical calculations up to third-order level of truncation are carried out for different values of dimensionless parameters as a special case. The effects of the buoyancy force, suction, heat generation, and variable wall temperature and concentration on the dimensionless velocity, temperature, and concentration profiles are studied. The results obtained are found to be in good agreement with previously published works.  相似文献   

6.
 The effect of lateral mass flux on mixed convection heat and mass transfer in a saturated porous medium adjacent to an inclined permeable surface is analyzed. A similarity solution is obtained when surface temperature and concentration, free stream velocity and injection/suction velocity of fluid are prescribed as power functions of distance from the leading edge. The cases when the flow and buoyancy forces are in the same and opposite directions are discussed both for aiding and opposing buoyancy effects. The governing parameters are the mixed convection parameter Gr, the Lewis number Le, the buoyancy ratio N, the lateral mass flux parameter f w, representing the effects of injection or withdrawal of fluid at the wall, and λ which specifies three cases of the inclined plate. The interactive effect of these parameters on heat and mass transfer rates are presented. It is observed that the diffusion ratio (Le) has a more pronounced effect on concentration field than on flow and temperature fields. It is found that the rates of heat and mass transfer increase with suction and decrease with injection of the fluid. Received on 31 August 2000 / Published online: 29 November 2001  相似文献   

7.
Combined heat and mass transfer in free, forced, and mixed convection flows along a porous wedge with a magnetic effect in the presence of a chemical reaction is investigated. The flow field characteristics are analyzed with the Runge—Kutta—Gill method in conjunction with the shooting method, and local nonsimilarity method. The governing boundary-layer equations are written in a dimensionless form with the use of the Falkner—Skan transformations. Owing to the effect of the buoyancy force, the power law of temperature and concentration, and suction/injection on the wall of the wedge, the flow field is locally nonsimilar. Numerical calculations up to the third-order level of truncation are carried out for different values of dimensionless parameters as a special case. Effects of the magnetic field strength in the presence of a chemical reaction with a variable wall temperature and concentration on the dimensionless velocity, temperature, and concentration profiles are shown graphically. Comparisons with previously published works are performed, and excellent agreement between the results is obtained.  相似文献   

8.
Combined heat and mass transfer on free, forced, and mixed convection flow along a porous wedge with magnetic effect in the presence of chemical reaction is investigated. The flow field characteristics are analyzed by the Runge-Kutta-Gill scheme with the shooting method as well as the local non-similarity method up to the third level of truncation, which are used to reduce the governing partial differential equations into nine ordinary differential equations. The governing boundary layer equations are converted to a dimensionless form by Falkner-Skan transformations. Because of the effect of suction/injection on the wall of the wedge with buoyancy force and variable wall temperature, the flow field is locally non-similar. Numerical calculations up to the third order level of truncation are carried out as a special case for different values of dimensionless parameters. Effects of the magnetic field strength in the presence of chemical reaction with variable wall temperature and concentration on the dimensionless velocity, temperature and concentration profiles are shown graphically.  相似文献   

9.
 An analysis has been carried out to determine the development of momentum and heat transfer occurring in the laminar boundary layer of an incompressible viscous electrically conducting fluid in the stagnation region of a rotating sphere caused by the impulsive motion of the free stream velocity and the angular velocity of the sphere. At the same time the wall temperature is also suddenly increased. This analysis includes both short and long-time solutions. The partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. There is a smooth transition from the short-time solution to the long-time solution. The surface shear stresses in the longitudinal and rotating directions and the heat transfer are found to increase with time, magnetic field, buoyancy parameter and the rotation parameter. Received on 27 January 2000  相似文献   

10.
IntroductionInthepresentpaper,acomputationalstudyoftheeffectofmagneticfieldonlowfrequencyoscillatingnaturalconvectionwithpressuregradientiscarriedout.Therehasbeenarecentinterestinexploringthemagneticdampingeffectstosuperimposeovermicrogravityforafurth…  相似文献   

11.
The unsteady flow and heat transfer of a viscous incompressible electrically conducting fluid in the forward stagnation point region of a rotating sphere in the presence of a magnetic field are investigated in this study. The unsteadiness in the flow field is caused by the velocity at the edge of the boundary layer and the angular velocity of the rotating sphere, both varying continuously with time. The system of ordinary differential equations governing the flow is solved numerically. For some particular cases, an analytical solution is also obtained. It is found that the surface shear stresses in x- and y-directions and the surface heat transfer increase with the acceleration, the magnetic and the rotation parameters whether the magnetic field is fixed relative to the fluid or body, except that the surface shear stress in x-direction and the surface heat transfer decrease with increasing the magnetic parameter when the magnetic field is fixed relative to the body. For a certain value of the acceleration parameter, the surface shear stress in the x-direction vanishes while the surface shear stress in the y-direction and the surface heat transfer remain finite. Also, below a certain value of the acceleration parameter, reverse flow occurs in the x-component of the velocity profile. Received on 18 May 1998  相似文献   

12.
Exact solutions are obtained for the heat transfer in an electrically conducting fluid past a stretching sheet subjected to the thermal boundary with either a prescribed temperature or a prescribed heat flux in the presence of a transverse magnetic field. The solutions for the heat transfer characteristics are evaluated numerically for different parameters, such as the magnetic parameterN, the Prandtl numberPr, the surface temperature indexs, and the surface heat flux indexd. It is observed that for the prescribed surface temperature case the fluid temperature increases due to the existance of the magnetic field, and decreases as the Prandtl number or the surface temperature index increases; for the prescribed surface heat flux case, the surface temperature decreases as the Prandtl number of the surface heat flux index increases, and the magnetic parameter decreases. In addition, varying the prescribed surface temperature indexs affects the mechanism of heat transfer.  相似文献   

13.
 The present study is devoted to investigate the influences of mass transfer on buoyancy induced flow over vertical flat plate embedded in a non-Newtonian fluid saturated porous medium. The Ostwald–de Waele power-law model is used to characterize the non-Newtonian fluid behavior. Similarity solution for the transformed governing equations is obtained with prescribed variable surface heat flux. Numerical results for the details of the velocity, temperature and concentration profiles are shown on graphs. Excess surface temperature as well as concentration gradient at the wall associated with heat flux distributions, which are entered in tables, have been presented for different values of the power-law index n, buoyancy ration B and the exponent λ as well as Lewis number Le. Received on 26 April 2000  相似文献   

14.
An analysis is made for the steady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching vertical sheet in its own plane. The stretching velocity, the surface temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the magnetic parameter M, the velocity exponent parameter m, the temperature exponent parameter n and the buoyancy parameter λ, while the Prandtl number Pr is fixed, namely Pr = 1, using a finite difference scheme known as the Keller-box method. Similarity solutions are obtained in the presence of the buoyancy force if n = 2m−1. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M increases for fixed λ and m. For m = 0.2 (i.e. n = −0.6), although the sheet and the fluid are at different temperatures, there is no local heat transfer at the surface of the sheet except at the singular point of the origin (fixed point).  相似文献   

15.
The present study is devoted to investigate the influences of viscous dissipation on buoyancy induced flow over a horizontal or a vertical flat plate embedded in a non-Newtonian fluid saturated porous medium. The Ostwald-de Waele power-law model is used to characterize the non-Newtonian fluid behavior. Similarity solutions for the transformed governing equations are obtained with prescribed variable surface temperature (PT) or with prescribed variable surface heat flux (PHF) for the horizontal plate case. While, the similarity solutions are obtained with prescribed variable surface heat flux for the vertical plate case. Different similar transformations, for each case, are used. Numerical results for the details of the velocity and temperature profiles are shown on graphs. Nusselt number associated with temperature distributions and excess surface temperature associated with heat flux distributions which are entered in tables have been presented for different values of the power-law index n and the exponent as well as Eckert number.  相似文献   

16.
The unsteady mixed convection flow of an incompressible laminar electrically conducting fluid over an impulsively stretched permeable vertical surface in an unbounded quiescent fluid in the presence of a transverse magnetic field has been investigated. At the same time, the surface temperature is suddenly increased from the surrounding fluid temperature or a constant heat flux is suddenly imposed on the surface. The problem is formulated in such a way that for small time it is governed by Rayleigh type of equation and for large time by Crane type of equation. The non-linear coupled parabolic partial differential equations governing the unsteady mixed convection flow under boundary layer approximations have been solved analytically by using the homotopy analysis method as well as numerically by an implicit finite difference scheme. The local skin friction coefficient and the local Nusselt number are found to decrease rapidly with time in a small time interval and they tend to steady-state values for t*≥5. They also increase with the buoyancy force and suction, but decrease with injection rate. The local skin friction coefficient increases with the magnetic field, but the local Nusselt number decreases. There is a smooth transition from the unsteady state to the steady state.  相似文献   

17.
The aim of the present study is to understand the problem of buoyancy and thermocapillary induced convection of cold water near its density maximum in an open cavity with temperature dependent properties in the presence of uniform external magnetic field. The governing equations are solved by the finite volume method. The results are discussed for various values of reference temperature parameter, density inversion parameter, Rayleigh, Hartmann and Marangoni numbers. It is observed that the temperature of maximum density leaves strong effects on fluid flow and heat transfer due to the formation of bi-cellular structure. Convection heat transfer is enhanced by thermocapillary force when buoyancy force is weakened.  相似文献   

18.
A steady-state mixed convection boundary layer flow of an electrically conducting nanofluid (Cu–H2O) obeying a power-law model in the presence of an alternating magnetic field due to a stretching vertical heated sheet is investigated numerically through the use of Wolfram Mathematica. The surface stretching velocity and the surface temperature are assumed to vary as linear functions of the distance from the origin. A similarity solution is presented, which depends on the nanoparticle volume fraction, power-law parameter, magnetic field parameter, buoyancy convection parameter, and modified Prandtl number.  相似文献   

19.
This paper discusses the behavior of g-jitter induced free convection in microgravity under the influence of a transverse magnetic field and in the presence of heat generation or absorption effects for a simple system consisting of two parallel impermeable infinite plates held at four different thermal boundary conditions. The governing equations for this problem are derived on the basis of the balance laws of mass, linear momentum, and energy modified to include the effects of thermal buoyancy, magnetic field and heat generation or absorption as well as Maxwell's equations. The fluid is assumed to be viscous, Newtonian and have constant properties except the density in the body force of the balance of linear momentum equation. The governing equations are solved analytically for the induced velocity and temperature distributions as well as for the electric field and total current for electrically-conducting and insulating walls. This is done for isothermal–isothermal, isoflux–isothermal, isothermal–isoflux and isoflux–isoflux thermal boundary conditions. Graphical results for the velocity amplitude and distribution are presented and discussed for various parametric physical conditions.  相似文献   

20.
The problem of steady, laminar, hydromagnetic simultaneous heat and mass transfer by mixed convection flow over a vertical plate embedded in a uniform porous medium with a stratified free stream and taking into account the presence of thermal dispersion is investigated for the case of power-law variations of both the wall temperature and concentration. Certain transformations are employed to transform the governing differential equations to a local similarity form. The transformed equations are solved numerically by an efficient implicit, iterative, finite-difference scheme. The obtained results are checked against previously published work on special cases of the problem and are found to be in excellent agreement. A parametric study illustrating the influence of the magnetic field, porous medium inertia effects, heat generation or absorption, lateral wall mass flux, concentration to thermal buoyancy ratio, and the Lewis number on the fluid velocity, temperature and concentration as well as the Nusselt and the Sherwood numbers is conducted. The results of this parametric study is shown graphically and the physical aspects of the problem are discussed. Received on 17 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号