首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper establishes the relationship between the solutions of the static contact problems of elasticity (no friction) for an isotropic half-plane and problems of electroelasticity for a transversely isotropic piezoelectric half-plane with the boundary perpendicular to the polarization axis. This allows finding the contact characteristics in the electroelastic case from the known elastic solution, without the need to solve the electroelastic problem. The contact problems of electroelasticity for different types of wedge-shaped punches (flat punch with rounded one or two edges, half-parabolic punch, and a periodic system of punches) are solved as examples Translated from Prikladnaya Mekhanika, Vol. 44, No. 11, pp. 55–70, November 2008.  相似文献   

2.
A static-equilibrium problem is solved for an electroelastic transversely isotropic medium with a flat crack of arbitrary shape located in the plane of isotropy. The medium is subjected to symmetric mechanical and electric loads. A relationship is established between the stress intensity factor (SIF) and electric-displacement intensity factor (EDIF) for an infinite piezoceramic body and the SIF for a purely elastic material with a crack of the same shape. This allows us to find the SIF and EDIF for an electroelastic material directly from the corresponding elastic problem, not solving electroelastic problems. As an example, the SIF and EDIF are determined for an elliptical crack in a piezoceramic body assuming linear behavior of the stresses and the normal electric displacement on the crack surface __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 67–77, November 2005.  相似文献   

3.
In this work, a micromechanical model for the estimate of the electroelastic behavior of the piezoelectric composites with coated reinforcements is proposed. The piezoelectric coating is considered as a thin layer with active electroelastic properties different from those of the inclusion and the matrix. The micromechanical approach based on the Green’s functions technique and on the interfacial operators is designed for solving the electroelasticity inhomogeneous coated inclusion problem. The effective properties of a piezoelectric composite containing thinly coated inclusions are obtained through the Mori–Tanaka’s model. Numerical investigations into electroelastic moduli responsible for the electromechanical coupling are presented as functions of the volume fraction and characteristics of the coated inclusions. Comparisons with existing analytical and numerical results are presented for cylindrical and elliptic coated inclusions.  相似文献   

4.
We study a three-dimensional contact problem on the indentation of an elliptic punch into a face of a linearly elastic wedge. The wedge is characterized by two parameters of elasticity and its edge is subjected to the action of an additional concentrated force. The other face wedge is free from stresses. The problem is reduced to an integral equation for the contact pressure. An asymptotic solution of this equation is obtained which is effective for a given contact region fairly remote from the edge. Calculations are performed that allow one to evaluate the effect of a force applied outside the contact region on the contact pressure distribution. The problem under study is a generalization of L. A. Galin’s problem on a force applied outside a circular punch on an elastic half-space [1, 2]. In a special case of a wedge with an opening angle of 180° and zero contact ellipse eccentricity, the obtained asymptotic relation coincides with the expansion of Galin’s exact solution in a series. Problems of indentation of an elliptic punch into a spatial wedge with the face not loaded outside the contact region have been studied previously. For example, the paper [3] dealt with the case of a known contact region (asymptotic method) and the paper [4] considered the case of an unknown contact region (numerical method). The solution of Galin’s problem allowed the authors of [2] to reduce the contact problem on the interaction of several punches applied to a half-space to a system of Fredholm integral equations of the second kind (Andreikin-Panasyuk method). A topical direction in contact mechanics is the model of discrete contact as well as related problems on the interaction of several punches [2, 5–8]. The interaction of several punches applied to a face of a wedge can be treated in a similar manner and an asymptotic solution can be obtained for the case where a concentrated force is applied at an arbitrary point of this face beyond the contact region rather than on the edge.  相似文献   

5.
The paper addresses a thermoelectroelastic problem for a piezoelectric body with an arbitrarily shaped plane crack in a plane perpendicular to the polarization axis under a symmetric thermal load. A relationship between the intensity factors for stress (SIF) and electric displacement (EDIF) in an infinite piezoceramic body with a crack under a thermal load and the SIF for a purely elastic body with a crack of the same shape under a mechanical load is established. This makes it possible to find the SIF and EDIF for an electroelastic material from the elastic solution without the need to solve specific problems of thermoelasticity. The SIF and EDIF for a piezoceramic body with an elliptic crack and linear distribution of temperature over the crack surface are found as an example __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 3, pp. 96–108, March 2008.  相似文献   

6.
The static equilibrium of an electroelastic transversely isotropic space with a plane crack under antisymmetric mechanical loads is studied. The crack is located in the plane of isotropy. Relationships are established between the stress intensity factors (SIFs) for an infinite piezoceramic body and the SIFs for a purely elastic body with a crack of the same form under the same loads. This makes it possible to find the SIFs for an electroelastic body without the need to solve specific electroelasitc problems. As an example, the SIFs are determined for a piezoelastic body with penny-shaped and elliptic cracks under shear __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 32–42, February 2006.  相似文献   

7.
The 3D contact problem on the action of a punch elliptic in horizontal projection on a transversally isotropic elastic half-space is considered for the case in which the isotropy planes are perpendicular to the boundary of the half-space. The elliptic contact region is assumed to be given (the punch has sharp edges). The integral equation of the contact problem is obtained. The elastic rigidity of the half-space boundary characterized by the normal displacement under the action of a given lumped force significantly depends on the chosen direction on this boundary. In this connection, the following two cases of location of the ellipse of contact are considered: it can be elongated along the first or the second axis of Cartesian coordinate system on the body boundary. Exact solutions are obtained for a punch with base shaped as an elliptic paraboloid, and these solutions are used to carry out the computations for various versions of the five elastic constants. The structure of the exact solution is found for a punch with polynomial base, and a method for determining the solution is proposed.  相似文献   

8.
We consider the dynamic contact problem on vertical motions of an absolutely rigid body on an elastic half-space. We assume that the contact region does not vary during the motion and there is no friction under the die bottom. We construct an approximate solution of the problem under the assumption that the variation in the contact pressure under the die bottom on the time interval in which the Rayleigh wave runs the distance equal to the contact area diameter is small. Computational formulas are obtained for the cases of circular and elliptic dies.  相似文献   

9.
The idea, first used by the author for the case of crack problems, is applied here to solve a contact problem for a transversely isotropic elastic layer resting on a smooth elastic half-space, made of a different transversely isotropic material. A rigid punch of arbitrary shape is pressed against the layer’s free surface. The governing integral equation is derived; it is mathematically equivalent to that of an electrostatic problem of an infinite row of coaxial charged disks in the shape of the domain of contact. The case of circular domain of contact is considered in detail. As a comparison, the method of integral transforms is also used to solve the problem. The main difference of our integral transform approach with the existing ones is in separating of our half-space solution from the integral transform terms. It is shown that both methods lead to the same results, thus giving a new interpretation to the integral transform as a sum of an infinite series of generalized images.  相似文献   

10.
The paper establishes a relationship between the solutions for cracks located in the isotropy plane of a transversely isotropic piezoceramic medium and opened (without friction) by rigid inclusions and the solutions for cracks in a purely elastic medium. This makes it possible to calculate the stress intensity factor (SIF) for cracks in an electroelastic medium from the SIF for an elastic isotropic material, without the need to solve the electroelastic problem. The use of the approach is exemplified by a penny-shaped crack opened by either a disk-shaped rigid inclusion of constant thickness or a rigid oblate spheroidal inclusion in an electroelastic medium __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 47–60, July 2008.  相似文献   

11.
Two problems are considered on frictionless indentation of a stamp into the upper face of a layer with a homogeneous field of initial stresses present in the layer. The model of an isotropic incompressible nonlinearly-elastic material determined by the Mooney potential is used. The following two cases are studied: the lower face of the prestressed layer is rigidly fixed, and the lower face of a prestressed layer is supported by a rigid foundation without friction. It is assumed that the additional stresses due to the action of the stamp on the layer are small as compared with the initial stresses. This assumption makes it possible to linearize the problems of determining the additional stresses. In what follows, the problems are reduced to solving two-dimensional integral equations (IE) of the first kind with symmetric irregular kernels with respect to the pressure in the contact region. As an example, the case of an elliptic (in plan) stamp acting on a layer is considered. The spatial contact problem for a prestressed elastic half-space was first considered in [1].  相似文献   

12.
The contact interaction of an elastic punch of arbitrary cross-section and an elastic semi-space with initial (residual) stresses is studied. A general method to solve the problem is proposed. It allows solving contact problems for bodies with initial (residual) stresses when the solution of the corresponding elastic problem is known __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 12, pp. 28–40, December 2007.  相似文献   

13.
The contact problem for the impression of spherical indenter into a non-homogeneous (both layered and functionally graded) elastic half-space is considered. Analytical methods for solving this problem have been developed. It is assumed that the Lame coefficients vary arbitrarily with the half-space depth. The problem is reduced to dual integral equations. The developed methods make it possible to find the analytical asymptotically exact problem solution, suitable for a PC. The influence of the Lame coefficients variation upon the contact stresses and size of the contact zone with different radius of indenter as well as values of the impressing forces are studied. The effect of the non-homogeneity is examined. The developed method allows to construct analytical solutions with presupposed accuracy and gives the opportunity to do multiparametric and qualitative investigations of the problem with minimal computation time expenditure.  相似文献   

14.
In the plane (plane strain) and axially symmetric statements, we study the problem of stability, under the action of longitudinal compressing forces, of an infinite elastic plate in two-sided contact with an elastic half-space. The upper layer of finite depth is described by the usual equations of linear theory of elasticity; the lower layer, which is geometrically nonlinear, incompressible, and infinite in depth, is prestressed by gravity forces. The total adhesion between the layer of finite depth and the lower half-space is realized. It is also assumed that the same adhesion takes place between the upper layer of the half-space and the plate with the contact tangential stresses taken into account.The results can be used to calculate the working capacity of coated bodies and layered composites and in problems of geophysics.The problem of stability of an infinite elastic plate under longitudinal compression under conditions of two-sided contact with an elastic base was studied earlier in the monograph [1] (Fuss-Winkler base) and in [2–4].  相似文献   

15.
We theoretically study the indentation response of a compressible soft electroactive material by a rigid punch. The half-space material is assumed to be initially subjected to a finite deformation and an electric biasing field. By adopting the linearized theory for incremental fields, which is established on the basis of a general nonlinear theory for electroelasticity, the appropriate equations governing the perturbed infinitesimal elastic and electric fields are derived particularly when the material is subjected to a uniform equibiaxial stretch and a uniform electric displacement. A general solution to the governing equations is presented, which is concisely expressed in terms of four quasi-harmonic functions. By adopting the potential theory method, exact contact solutions for three common perfectly conducting rigid indenters of flat-ended circular, conical and spherical geometries can be derived, and some explicit relations that are of practical importance are outlined.  相似文献   

16.
Plane and axisymmetric contact problems for a three-layer elastic half-space are considered. The plane problem is reduced to a singular integral equation of the first kind whose approximate solution is obtained by a modified Multhopp-Kalandiya method of collocation. The axisymmetric problem is reduced to an integral Fredholm equation of the second kind whose approximate solution is obtained by a specially developed method of collocation over the nodes of the Legendre polynomial. An axisymmetric contact problem for an transversely isotropic layer completely adherent to an elastic isotropic half-space is also considered. Examples of calculating the characteristic integral quantities are given. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 165–175, May–June, 2006.  相似文献   

17.
The axisymmetric contact problem for an elastic half-space and a rigid punch is considered using integral transform methods. The end of the punch is sectionally smooth and there is incomplete penetration. The normal stress under the punch is calculated and found to have an elliptic integral type of singularity.  相似文献   

18.
A solution is given for the frictionless indentation of an elastic half-space by a flat-ended cylindrical punch with a central circular recess, when the load is large enough to establish a circular region of contact in the recess. The problem is reduced to two simultaneous Fredholm equations using the method of complex potentials due to Green and Collins. Results are presented for the relationship between load, contact radius and penetration for various punch geometries.  相似文献   

19.
The problem considered is that of a rigid flat-ended punch with rectangular contact area pressed into a linear elastic half-space to a uniform depth. Both the lubricated and adhesive cases are treated. The problem reduces to solving an integral equation (or equations) for the contact stresses. These stresses have a singular nature which is dealt with explicitly by a singularity-incorporating finite-element method. Values for the stiffness of the lubricated punch and the adhesive punch are determined: the effect of adhesion on the stiffness is found to be small, producing an increase of the order of 3%.  相似文献   

20.
The supersonic stage of interaction (where the rate of expansion of the contact region is no less than the speed of compression waves) between a Timoshenko-type spherical shell (indenter) and an elastic half-space (foundation) is studied. The expansion of the desired functions in series in Legendre polynomials and their derivatives are used to construct a system of resolving equations. An analytical-numerical algorithm for solving this system is developed. A similar problem was considered in [1], where the original problem was replaced by a problem with a periodic system of indenters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号