首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We continue to study hyperbolic systems of conservation laws with umbilic degeneracy. We further extend our compactness framework established earlier to other canonical classes of quadratic flux systems with an isolated umbilic point. With the aid of this compactness framework, we establish the compactness of solution operators and the long-time behavior of entropy solutions in L with large initial data, and we prove the convergence of the viscosity method, as well as the Lax-Friedrichs scheme and the Godunov scheme, for a canonical class of nonlinear hyperbolic systems with umbilic degeneracy.  相似文献   

2.
We identify quadratic systems of conservation laws with generic behavior at infinity, where the genericity conditions derive naturally when studying weak solutions of conservation laws. Namely, we identify quadratic models for which the vector field associated with the viscosity admissibility criterion has properties at infinity that are true for an open and dense subset of the set of all planar quadratic vector fields in the metric associated with the Euclidian space of coefficients. We determine the boundaries of the regions containing, generic models in the parameter space of coefficients of quadratic models. We show that when crossing the boundaries of nongeneric models transversally, the Poincaré compactification of the corresponding vector field undergoes either a saddle node or a transcritical bifurcation at infinity. For quadratic models with a bounded elliptic region we calculate the loci of nongeneric models assuming the viscosity matrix to be the identity. We obtain a two-parameter normal form for such models and show that the boundaries that determine generic models in the two-dimensional parameter space correspond to the Schaeffer-Shearer classification of models with an isolated umbilic point. Since the loci of nongeneric models are invariant under the equivalence transformations that preserve weak solutions of conservation laws, understanding their behavior at infinity promises to provide an insight into a general classification of quadratic conservation laws.  相似文献   

3.
Weibel  S.  Kaper  T. J.  Baillieul  J. 《Nonlinear dynamics》1997,13(2):131-170
In this paper, we study emergent behaviors elicited by applying open-loop, high-frequency oscillatory forcing to nonlinear control systems. First, we study hovering motions, which are periodic orbits associated with stable fixed points of the averaged system which are not fixed points of the forced system. We use the method of successive approximations to establish the existence of hovering motions, as well as compute analytical approximations of their locations, for the cart and pendulum on an inclined plane. Moreover, when small-amplitude dissipation is added, we show that the hovering motions are asymptotically stable. We compare the results for all of the local analysis with results of simulating Poincaré maps. Second, we perform a complete global analysis on this cart and pendulum system. Toward this end, the same iteration scheme we use to establish the existence of the hovering periodic orbits also yields the existence of periodic orbits near saddle equilibria of the averaged system. These latter periodic orbits are shown to be saddle periodic orbits, and in turn they have stable and unstable manifolds that form homoclinic tangles. A quantitative global analysis of these tangles is carried out. Three distinguished limiting cases are analyzed. Melnikov theory is applied in one case, and an extension of a recent result about exponentially small splitting of separatrices is developed and applied in another case. Finally, the influence of small damping is studied. This global analysis is useful in the design of open-loop control laws.  相似文献   

4.
. We give an intrinsic definition of a heteroclinic network as a flow-invariant set that is indecomposable but not recurrent. Our definition covers many previously discussed examples of heteroclinic behavior. In addition, it provides a natural framework for discussing cycles between invariant sets more complicated than equilibria or limit cycles. We allow for cycles that connect chaotic sets (cycling chaos) or heteroclinic cycles (cycling cycles). Both phenomena can occur robustly in systems with symmetry. We analyze the structure of a heteroclinic network as well as dynamics on and near the network. In particular, we introduce a notion of ‘depth’ for a heteroclinic network (simple cycles between equilibria have depth 1), characterize the connections and discuss issues of attraction, robustness and asymptotic behavior near a network. We consider in detail a system of nine coupled cells where one can find a variety of complicated, yet robust, dynamics in simple polynomial vector fields that possess symmetries. For this model system, we find and prove the existence of depth‐2 networks involving connections between heteroclinic cycles and equilibria, and study bifurcations of such structures. (Accepted July 6, 1998)  相似文献   

5.
In this paper a compactness framework for approximate solutions to nonlinear hyperbolic systems with umbilic degeneracy is established by combining techniques of compensated compactness with some classical methods, and by a detailed analysis of a highly singular equation of Euler-Poisson-Darboux type. Then this framework is successfully applied to prove the convergence of the viscosity method and to prove the existence of global entropy solutions for the Cauchy problem with large initial data for a canonical class of the systems with quadratic flux form.  相似文献   

6.
We study the properties of solutions of fully nonlinear, positively homogeneous elliptic equations near boundary points of Lipschitz domains at which the solution may be singular. We show that these equations have two positive solutions in each cone of , and the solutions are unique in an appropriate sense. We introduce a new method for analyzing the behavior of solutions near certain Lipschitz boundary points, which permits us to classify isolated boundary singularities of solutions which are bounded from either above or below. We also obtain a sharp Phragmén–Lindel?f result as well as a principle of positive singularities in certain Lipschitz domains.  相似文献   

7.
We study the existence, in a two-parameter plane, of double- and triple-pulse homoclinic orbits in a ?2-symmetric three-dimensional system, in the vicinity of a Belyakov point (a?point where the involved equilibrium in the homoclinic connection changes from saddle to saddle-focus) in the Shil??nikov zone. The first-order computation of these global connections allows us to describe their position and organization in the parameter plane. The analytical results are successfully applied in the study of such degeneration in Chua??s equation.  相似文献   

8.
洪灵  徐健学 《力学学报》2002,34(1):136-141
应用广义胞映射图论(Generalized Cell Mapping Digraph)方法,数值地研究Thompson的逃逸方程在最佳逃逸点附近的分岔。发现了嵌入在Wada分形吸引域边界上的混沌鞍,混沌鞍是状态空间不稳定(非吸引)的混沌不变集合。Wada分形吸引域边界是具有Wada性质的边界,即吸引域边界上的任意点也同时是至少两个其它吸引域的边界点,称为Wada域边界。我们证明Wada域边界上的混沌鞍导致局部鞍结分岔具有全局不确定性结局,研究了Wada域边界上混沌鞍的形成与演化,证明最终的逃逸分岔是混沌吸引子碰撞混沌鞍的边界激变。  相似文献   

9.
Klein-Gordon chains are one-dimensional lattices of nonlinear oscillators in an anharmonic on-site potential, linearly coupled with their first neighbors. In this paper, we study the existence in such networks of spatially localized solutions, which appear time periodic in a referential in translation at constant velocity. These solutions are called travelling breathers. In the case of travelling wave solutions, the existence of exact solutions has been obtained by Iooss and Kirchgässner. Formal multiscale expansions have been used by Remoissenet to derive approximate solutions of travelling breathers in the form of modulated plane waves. James and Sire have studied the existence of specific travelling breather solutions, consisting in pulsating travelling waves which are exactly translated of 2 lattice sites after a fixed propagation time T. In this paper, we generalize this approach to pulsating travelling waves which are exactly translated of p≥ 3 sites after a given time T p being arbitrary. By formulating the problem as a dynamical system, one is able to reduce the system locally to a finite dimensional set of ordinary differential equations (ODE), whose dimension depends on the parameter values of the problem. We prove that the principal part of this system of ODE admits homoclinic connections to p-tori under general conditions on the potential. One can obtain leading order approximations of these homoclinic connections and these orbits should correspond, for the oscillator chain, to small amplitude travelling breather solutions superposed on an exponentially small quasi-periodic tail.  相似文献   

10.
We address an iterative procedure that can be used to detect coarse-grained hyperbolic unstable equilibria (saddle points) of microscopic simulators when no equations at the macroscopic level are available. The scheme is based on the concept of coarse timestepping (Kevrekidis et al. in Commun. Math. Sci. 1(4):715–762, 2003) incorporating an adaptive mechanism based on the chord method allowing the location of coarse-grained saddle points directly. Ultimately, it can be used in a consecutive manner to trace the coarse-grained open-loop saddle-node bifurcation diagrams of complex dynamical systems and large-scale systems of ordinary and/or partial differential equations. We illustrate the procedure through two indicative examples including (i) a kinetic Monte Carlo simulation (kMC) of simple surface catalytic reactions and (ii) a simple agent-based model, a financial caricature which is used to simulate the dynamics of buying and selling of a large population of interacting individuals in the presence of mimesis. Both models exhibit coarse-grained regular turning points which give rise to branches of saddle points.  相似文献   

11.
A second-order delay differential equation (DDE) which models certain mechanical and neuromechanical regulatory systems is analyzed. We show that there are points in parameter space for which 1:2 resonant Hopf–Hopf interaction occurs at a steady state of the system. Using a singularity theoretic classification scheme [as presented by LeBlanc (1995) and LeBlanc and Langford (1996)], we then give the bifurcation diagrams for periodic solutions in two cases: variation of the delay and variation of the feedback gain near the resonance point. In both cases, period-doubling bifurcations of periodic solutions occur, and it is argued that two tori can bifurcate from these periodic solutions near the period doubling point. These results are then compared to numerical simulations of the DDE.  相似文献   

12.
We present a new algorithm for continuation of limit cycles of autonomous systems as a system parameter is varied. The algorithm works in phase space with an ordered set of points on the limit cycle, along with spline interpolation. Currently popular algorithms in bifurcation analysis packages compute time-domain approximations of limit cycles using either shooting or collocation. The present approach seems useful for continuation near saddle homoclinic points, where it encounters a corner while time-domain methods essentially encounter a discontinuity (a relatively short period of rapid variation). Other phase space-based algorithms use rescaled arclength in place of time, but subsequently resemble the time-domain methods. Compared to these, we introduce additional freedom through a variable stretching of arclength based on local curvature, through the use of an auxiliary index-based variable. Several numerical examples are presented. Comparisons with results from the popular package, MATCONT, are favorable close to saddle homoclinic points.  相似文献   

13.
We study the asymptotic behavior of solutions to an equation describing non-linear vibration of a string with viscosity. In the case when the string is unstretched (the degenerate case), we determine the decay order of solutions by investigating the dynamics near an infinite-dimensional center manifold. Moreover, we classify the asymptotic behavior of all solutions from a dynamical systems point of view. We also deal with the case where the string is stretched (the nondegenerate case).  相似文献   

14.
We study the dynamics of planar diffeomorphisms having a unique fixed point that is a hyperbolic local saddle. We obtain sufficient conditions under which the fixed point is a global saddle. We also address the special case of \(D_2\)-symmetric maps, for which we obtain a similar result for \(C^1\) homeomorphisms. Some applications to differential equations are also given.  相似文献   

15.
We show how the existence and uniqueness of Riemann solutions are affected by the precise form of viscosity which is used to select shock waves admitting a viscous profile. We study a complete list of codimension-1 bifurcations that depend on viscosity and distinguish between Lax shock waves with and without a profile. These bifurcations are the saddle–saddle heteroclinic bifurcation, the homoclinic bifurcation, and the nonhyperbolic periodic orbit bifurcation. We prove that these influence the existence and uniqueness of Riemann solutions and affect the number and type of waves comprising a Riemann solution. We present generic situations in which viscous Riemann solutions differ from Lax solutions.  相似文献   

16.
We consider scalar reaction-diffusion equations with non-dissipative nonlinearities generating global semiflows which exhibit blow-up in infinite time. This type of equations was only recently approached and the corresponding dynamical systems are known as slowly non-dissipative systems. The existence of unbounded solutions, referred to as grow-up solutions, requires the introduction of some objects interpreted as equilibria at infinity. By extending known results, we are able to obtain a complete decomposition of the associated non-compact global attractor. The connecting orbit structure is determined based on the Sturm permutation method, which yields a simple criterion for the existence of heteroclinic connections.  相似文献   

17.
The (mixed finite element) discretization of the linearized Navier–Stokes equations leads to a linear system of equations of saddle point type. The iterative solution of this linear system requires the construction of suitable preconditioners, especially in the case of high Reynolds numbers. In the past, a stabilizing approach has been suggested which does not change the exact solution but influences the accuracy of the discrete solution as well as the effectiveness of iterative solvers. This stabilization technique can be performed on the continuous side before the discretization, where it is known as ‘grad‐div’ (GD) stabilization, as well as on the discrete side where it is known as an ‘augmented Lagrangian’ (AL) technique (and does not change the discrete solution). In this paper, we study the applicability of ??‐LU factorizations to solve the arising subproblems in the different variants of stabilized saddle point systems. We consider both the saddle point systems that arise from the stabilization in the continuous as well as on the discrete setting. Recently, a modified AL preconditioner has been proposed for the system resulting from the discrete stabilization. We provide a straightforward generalization of this approach to the GD stabilization. We conclude the paper with numerical tests for a variety of problems to illustrate the behavior of the considered preconditioners as well as the suitability of ??‐LU factorization in the preconditioners. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A study is made of the dynamics of oscillating systems with a slowly varying parameter. A slowly varying forcing periodically crosses a critical value corresponding to a pitchfork bifurcation. The instantaneous phase portrait exhibits a centre when the forcing does not exceed the critical value, and a saddle and two centres with an associated double homoclinic loop separatrix beyond this value. The aim of this study is to construct a Poincaré map in order to describe the dynamics of the system as it repeatedly crosses the bifurcation point. For that purpose averaging methods and asymptotic matching techniques connecting local solutions are applied. Given the initial state and the values of the parameters the properties of the Poincaré map can be studied. Both sensitive dependence on initial conditions and (quasi) periodicity are observed. Moreover, Lyapunov exponents are computed. The asymptotic expressions for the Poincaré map are compared with numerical solutions of the full system that includes small damping.  相似文献   

19.
In this paper we study bound state solutions of a class of two-component nonlinear elliptic systems with a large parameter tending to infinity. The large parameter giving strong intercomponent repulsion induces phase separation and forms segregated nodal domains divided by an interface. To obtain the profile of bound state solutions near the interface, we prove the uniform Lipschitz continuity of bound state solutions when the spatial dimension is N = 1. Furthermore, we show that the limiting nonlinear elliptic system that arises has unbounded solutions with symmetry and monotonicity. These unbounded solutions are useful for rigorously deriving the asymptotic expansion of the minimizing energy which is consistent with the hypothesis of Du and Zhang (Discontin Dynam Sys, 2012). When the spatial dimension is N = 2, we establish the De Giorgi type conjecture for the blow-up nonlinear elliptic system under suitable conditions at infinity on bound state solutions. These results naturally lead us to formulate De Giorgi type conjectures for these types of systems in higher dimensions.  相似文献   

20.
Singularity theory is applied for the study of the characteristic three-dimensional tensegrity-cytoskeleton model after adopting an incompressibility constraint. The model comprises six elastic bars interconnected with 24 elastic string members. Previous studies have already been performed on non-constrained systems; however, the present one allows for general non-symmetric equilibrium configurations. Critical conditions for branching of the equilibrium are derived and post-critical behaviour is discussed. Classification of the simple and compound singularities of the total potential energy function is effected. The theory is implemented into the cusp catastrophe for the case of one-dimensional branching of the buckling-allowed tensegrity model, and an elliptic umbilic singularity for compound branching of a rigid-bar model. It is pointed out that singularity studies with constraints demand a quite different mathematical approach than those without constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号