首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
???????????????漰????????????????   总被引:1,自引:0,他引:1  
简单回顾了被动行走的发展,建立了无量纲形式的平面直腿圆弧足被动行走动力学 模型,详细介绍了被动行走模型仿真的步骤. 并且采用胞胞映射计算得到该圆弧足模型的吸 引盆,发现该模型的吸引盆大于以前研究者研究的点状足模型的吸引盆. 这表明在初始状态 变量偏离不动点很大时,模型仿真仍可收敛到稳定的步态,即该模型具有较高的鲁棒性.  相似文献   

2.
郑鹏  王琪  吕敬  郑旭东 《力学学报》2020,52(1):162-170
本文研究了圆弧足被动行走器支撑足与地面间的摩擦系数和滚阻系数对被动行走器步态的影响. 首先分别利用扩展的 赫兹接触力模型和LuGre摩擦模型描述了支撑足与地面接触点处的法向支撑力和切向摩擦力,并考虑了行走过程中支撑足 所受的滚动摩阻;其次利用第二类Lagrange方程推导出了该系统的动力学方程,并通过与已有成果的对比确定 了合适的LuGre摩擦模型参数;最后仿真分析了摩擦系数和滚阻系数对被动行走器步态的影响. 研究发现:摩擦系数的改变 虽然对被动行走器行走的平均速度、步幅,以及支撑足接触点处的最大法向接触力的影响较小,但摩擦系数的减小 会改变其行走步态类型,如发生倍周期分岔甚至混沌现象;然而,滚阻系数的改变会对行走器行走的 平均速度、步幅,以及支撑足接触点处的最大法向接触力的影响较大,尚未发现滚阻系数的改变会引起其行走步态的变化.   相似文献   

3.
王晓军  王琪 《力学学报》2015,47(5):814-821
基于接触力学理论和线性互补问题的算法, 给出了一种含接触、碰撞以及库伦干摩擦, 同时具有理想定常约束(铰链约束) 和非定常约束(驱动约束) 的平面多刚体系统动力学的建模与数值计算方法. 将系统中的每个物体视为刚体, 但考虑物体接触点的局部变形, 将物体间的法向接触力表示成嵌入量与嵌入速度的非线性函数,其切向摩擦力采用库伦干摩擦模型. 利用摩擦余量和接触点的切向加速度等概念, 给出了摩擦定律的互补关系式; 并利用事件驱动法, 将接触点的黏滞-滑移状态切换的判断及黏滞状态下摩擦力的计算问题转化成线性互补问题的求解. 利用第一类拉格朗日方程和鲍姆加藤约束稳定化方法建立了系统的动力学方程, 由此可降低约束的漂移, 并可求解该系统的运动、法向接触力和切向摩擦力, 还可以求解理想铰链约束力和驱动约束力. 最后以一个类似夯机的平面多刚体系统为例, 分析了其动力学特性, 并说明了相关算法的有效性.   相似文献   

4.
The passive dynamic walking is a new concept of biped walking. Researchers have been working on this area with both theoretical analysis and experimental analysis ever since McGeer. This paper presents our compass-like passive walking model with a new set of testing system. Two gyroscopes are used for measuring the angles of two legs, and ten FlexiForce sensors are used for measuring the contact forces on the feet. We got the experimental data on the passive walking process with the validated testing system. A great emphasis was put on the contact process between the feet and the slope. The contact process of the stance leg was divided into four sections, and differences between the real testing contact process and the classic analytical contact process with no bouncing and slipping were summarized.  相似文献   

5.
Walking without impacts has been considered in dynamics as a motion/force control problem. In order to avoid impacts, an approach for both the specified motion of the biped and its ground reaction forces was presented yielding a combined motion and force control problem. As an application, a walker on a horizontal plane has been considered. In this paper, it is shown how the control of the ground reaction forces and the energy consumption depend on the gradient of a slope. The biped dynamics and the constraints within the biped system and on the ground are discussed. A motion control synthesis is developed using the inverse dynamics principle proven to be most efficient for human walking research, too. The impactless walking with controlled legs is illustrated by a seven-link biped. The “flying” biped has nine degrees of freedom, with six control inputs. During locomotion, the standing leg has three scleronomic constraints, and the trunk has three rheonomic constraints. However, there are three rheonomic constraints for the prescribed leg motion or three scleronomic constraints for reaction forces of the trailing leg, respectively. The nominal control action for impactless walking can be precomputed and stored. The model proposed allows the investigation of several problems: uphill and downhill walking, optimization of step length, stiction of the feet on the slope and many more. All these findings are also of interest in biomechanics.  相似文献   

6.
An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are treated as bilat- eral constraints by neglecting the impact between sliders and guides. Firstly, the normal forces acting on sliders, the driv- ing constraint forces (or moments) and the constraint forces of smooth revolute joints are all described by complementary conditions. The frictional contacts are characterized by a set- valued force law of Coulomb's dry friction. Combined with the theory of the horizontal linear complementarity problem (HLCP), an event-driven scheme is used to detect the transi- tions of the contact situation between sliders and guides, and the stick-slip transitions of sliders, respectively. And then, all constraint forces in the system can be computed easily. Secondly, the dynamic equations of multibody systems are written at the acceleration-force level by the Lagrange multiplier technique, and the Baumgarte stabilization method is used to reduce the constraint drift. Finally, a numerical example is given to show some non-smooth dynamical behaviors of the studied system. The obtained results validate the feasibility of algorithm and the effect of constraint stabilization.  相似文献   

7.

Passive walkers are dynamically stable robots with a gait that resembles the human locomotion. These walkers can be studied to better understand the dynamic behavior of the human gait and design efficient active walkers and assistive devices. In this paper, we study the walking dynamics of a three-link passive walker with an asymmetrical structure where one leg has a knee while the other is knee-less. After finding a 2-periodic steady gait for the three-link walker with humanlike inertial parameters for both legs, the possibility of a gait with symmetrical step lengths is discussed where the half inter-leg angles at the beginning of every step are made equal by altering the physical parameters of the knee-less leg. We further study the gaits with symmetrical step lengths and show that by replacing one leg of a four-link symmetric walker with the knee-less leg of the three-link walker with the symmetrical half inter-leg angles, the dynamic behavior of the kneed leg remains unchanged. This approach can be adapted in the field of gait rehabilitation and prosthesis design to obtain a more symmetrical gait and preserve the motion of the healthy leg.

  相似文献   

8.
This paper presents a new passive-biped model consisting of a simplest walking model beneath an upper body, with no kinematic constraint. The upper body is attached to the legs with a linear torsional spring. The model is a passive dynamic walker, so it walks down a slope without energy input. The governing equations of motion are derived and simulated for the parameter analysis purposes. Simulation results reveal some different routes to chaos that have not been observed in previous models.  相似文献   

9.
This paper studies repetitive gaits found in a 3D passivewalking mechanism descending an inclined plane. By using directnumerical integration and implementing a semi-analytical scheme forstability analysis and root finding, we follow the corresponding limitcycles under parameter variations. The 3D walking model, which is fullydescribed in the paper, contains both force discontinuities andimpact-like instantaneous changes of state variables. As a result, thestandard use of the variational equations is suitably modified. Theproblem of finding initial conditions for the 3D walker is solved bystarting in an almost planar configuration, making it possible to useparameters and initial conditions found for planar walkers. The walkeris gradually transformed into a 3D walker having dynamics in all spatialdirections. We present such a parameter variation showing the stabilityand the amplitude of the hip sway motion. We also show the dependence ofgait cycle measurements, such as stride time, stride length, averagevelocity, and power consumption, on the plane inclination. The paperconcludes with a discussion of some ideas on how to extend the present3D walker using the tools derived in this paper.  相似文献   

10.
采用非光滑多体系统动力学的方法研究浮放物体与基础平台组成的多体系统,建立其非光滑接触的动力学方程与数值算法.浮放物体由主体部分和支撑腿组成,其间通过含黏弹性阻力偶的转动铰连接.支撑腿与基础平台间的接触力简化为接触点的法向接触力和摩擦力,采用扩展的赫兹接触力模型描述接触点的法向接触力,采用库伦干摩擦模型描述其摩擦力.采用笛卡尔坐标系下的位形坐标作为系统的广义坐标.首先,将基础平台运动看作非定常约束,用第一类拉格朗日方程建立系统的动力学方程,并采用鲍姆加藤约束稳定化的方法解决违约问题.随后给出基于事件驱动法和线性互补方法的数值算法.当相对切向速度为零时,构造静滑动摩擦力的正负余量和正、负向加速度的互补关系,从而将接触点黏滞——滑移切换的判断以及静滑动摩擦力的计算转化为线性互补问题进行求解,并采用Lemke算法求解线性互补问题.最后,通过数值仿真选择合适的步长;通过仿真结果说明浮放物体运动中存在的黏滞-滑移切换现象以及基础平台运动、质心位置对浮放物体运动的影响.  相似文献   

11.
Dynamic response of tower cranes coupled with the pendulum motions of the payload is studied in this paper. A simple perturbation scheme and the assumption of small pendulum angle are applied to simplify the governing equation. The tower crane is modeled by the finite element method, while the pendulum motion is represented as rigid-body kinetics. Integrated governing equations for the coupled dynamics problem are derived based on Lagrange’s equations including the dissipation function. Dynamics of a real luffing crane model with the spherical and planar pendulum motions is analyzed using the proposed formulations and computational method. It is found that the dynamic responses of the tower crane are dominated by both the first few natural frequencies of crane structure and the pendulum motion of the payload. The dynamic amplification factors generally increase with the increase of the initial pendulum angle and the changes are just slightly nonlinear for the planar pendulum motion.  相似文献   

12.
The landing buffer is an important problem in the research on bionic locust jumping robots, and the differ-ent modes of landing and buffering can affect the dynamic performance of the buffering process significantly. Based on an experimental observation, the different modes of landing and buffering are determined, which include the different numbers of landing legs and different motion modes of legs in the buffering process. Then a bionic locust mechanism is established, and the springs are used to replace the leg muscles to achieve a buffering effect. To reveal the dynamic performance in the buffering process of the bionic locust mechanism, a dynamic model is established with different modes of landing and buffering. In particular, to analyze the buffering process conveniently, an equivalent vibration dynamic model of the bionic locust mechanism is proposed. Given the support forces of the ground to the leg links, which can be obtained from the dynamic model, the spring forces of the legs and the impact resistance of each leg are the important parameters affecting buffering performance, and evaluation principles for buffering performance are proposed according to the aforementioned parameters. Based on the dynamic model and these evaluation principles, the buffer-ing performances are analyzed and compared in different modes of landing and buffering on a horizontal plane and an inclined plane. The results show that the mechanism with the ends of the legs sliding can obtain a better dynamic per-formance. This study offers primary theories for buffering dynamics and an evaluation of landing buffer performance, and it establishes a theoretical basis for studies and engineer-ing applications.  相似文献   

13.
富立  胡鸿奎  富腾 《力学学报》2017,49(5):1115-1125
基于非光滑动力学方法的多体系统接触碰撞分析是目前多体系统动力学的研究热点.本文采用牛顿-欧拉方法建立多体系统接触、碰撞问题的动力学模型,给出一种牛顿-欧拉型线性互补公式.该建模方法与目前一般采用的拉格朗日建模方法的不同之处是约束条件中除了库仑摩擦、单边约束之外还含有光滑等式约束.在建立系统动力学模型时,首先解除摩擦约束和单边约束得到原系统对应的基本系统.牛顿-欧拉方法采用最大数目坐标建立基本系统的动力学方程,由于坐标不相互独立,因此基本系统中带有等式约束,其数学模型为一组微分代数方程.借助约束雅可比矩阵,在基本系统微分代数方程中添加摩擦接触和单边约束对应的拉氏乘子,就可以得到系统全局运动的具有变拓扑结构特征的动力学方程,再结合非光滑约束互补条件便可构成完备的系统动力学模型.完备的动力学模型由动力学微分方程以及等式约束和不等式约束组成.线性互补公式采用分块矩阵形式进行推导,简化了推导过程.数值计算采用基于线性互补的时间步进算法.时间步进算法是目前流行的非光滑数值算法,其突出特点是可以免去数值积分中繁琐的事件检测过程,而数值积分过程中通过对线性互补问题的求解可以确定系统的触-离状态.通过对典型的曲柄滑块间隙机构进行数值分析,验证本文方法的有效性.  相似文献   

14.
由人类步行的生物力学研究得到启发,在被动双足步行机器人的髋关节处引入了扭簧,并通过仿真和试验研究了弹簧刚度对被动步行稳定性的影响.在仿真中,用胞映射方法计算被动步行机器人的吸引盆,并用吸引盆来衡量机器人的稳定性,研究了弹簧刚度对被动步行吸引盆大小的影响. 仿真结果表明, 吸引盆随着弹簧刚度的增大而增大. 在试验中,使机器人在各弹簧刚度参数下沿斜坡向下行走100次,记录下行走到头的次数作为稳定性的度量. 试验结果表明, 存在一个大小适中的弹簧刚度使机器人稳定性最大. 对弹簧提高机器人稳定性的原因进行了分析,对造成仿真与试验之间差异的原因进行了分析.   相似文献   

15.
The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance joint. The normal and tangential forces acting on the contact points between the journal and the bearing are described by using a Hertzian-based contact force model and the Coulomb friction models, respectively. The dynamic equations of the mechanism are derived based on the Lagrange equations of the first kind and the Baumgarte stabilization method. The frictional force is solved via the linear complementarity problem (LCP) algorithm and the trial-and-error algorithm. Finally, three numerical examples are given to show the influence of the two Coulomb friction models on the dynamic behavior of the mechanism. Numerical results show that due to the stick friction, the slider-crank mechanism may exhibit stick-slip motion and can balance at some special positions, while the mechanism with ideal joints cannot.  相似文献   

16.
Analyzing non-smooth mechanical systems requires often the solution of inclusion problems of normal cone type. These problems arise for example in the event-driven or time-stepping simulation approaches. Such inclusion problems can be written as non-linear equations, which can be solved iteratively. In this paper we discuss three different methods to derive the non-linear equations representing the inclusions arising in the event-driven simulation approach. First, we formulate inclusions describing the individual non-smooth constraints and solve them successively. Secondly, we interpret the non-linear equations as the conditions for the saddle point of the augmented Lagrangian function. As a third possibility we discuss the exact regularization of set-valued force laws. All three methods lead to the same numerical scheme, but give different insight into the problem. Especially the factor r occurring in the non-linear equations is discussed. Two iterative methods for solving the non-linear equations are presented together with some remarks on convergence.  相似文献   

17.
戴巧莲  陈力 《力学与实践》2016,38(4):386-390,397
研究了载体位置、姿态均不受控的情况下,系统参数不确定的柔性关节空间机器人轨迹跟踪的控制问题.结合系统动量、动量矩守恒关系,利用拉格朗日法推导出系统的动力学模型.为减小系统柔性关节对系统控制精度的影响,采用关节柔性补偿器来等效降低系统关节的柔性.再借助奇异摄动法,针对系统参数不确定的情况,设计了柔性关节空间机器人基于干扰观测器的退步自适应滑模控制方案.该方案不需要对系统惯性参数进行线性化处理,控制器结构简单,且实现了空间机器人期望轨迹的精确跟踪控制.通过平面两杆空间机器人的数值仿真证明了该方法的有效性.  相似文献   

18.
The dynamic modeling and analysis of planar rigid multibody systems that experience contact-impact events is presented and discussed throughout this work. The methodology is based on the nonsmooth dynamics approach, in which the interaction of the colliding bodies is modeled with multiple frictional unilateral constraints. Rigid multibody systems are stated as an equality of measures, which are formulated at the velocity-impulse level. The equations of motion are complemented with constitutive laws for the forces and impulses in the normal and tangential directions. In this work, the unilateral constraints are described by a set-valued force law of the type of Signorini??s condition, while the frictional contacts are characterized by a set-valued force law of the type of Coulomb??s law for dry friction. The resulting contact-impact problem is formulated and solved as an augmented Lagrangian approach, which is embedded in the Moreau time-stepping method. The effectiveness of the methodologies presented in this work is demonstrated throughout the dynamic simulation of a cam-follower system of an industrial cutting file machine.  相似文献   

19.
漂浮基空间机械臂关节轨迹跟踪的增广鲁棒控制方法   总被引:5,自引:1,他引:4  
讨论了载体位置与姿态均不受控制的漂浮基空间机械臂系统的控制问题。基于增广变量法,解决了空间机械臂系统的控制方程关于系统惯性参数的非线性化问题;保持了控制方程关于系统惯性参数的线性关系。在此基础上,针对系统载荷参数不确定的情况下,提出了关节空间轨迹追踪 的增广鲁棒控制方法,并应用Lyapunov直接方法证明了 提到的控制方案能使系统满足渐近稳定性条件。通过仿真运算,证实了方法的有效性。  相似文献   

20.
The models obtained from equations of rolling of an apparatus with small slips of wheels with respect to the supporting plane are considered by passing to the limit of infinite values of rigidity of contact forces (zero values of slip speeds). The conditions under which these equations become the classical nonholonomic wheel no-slip model are discussed. It is shown that, for small angles of turn of the apparatus front wheels about the vertical axis, neglect of slips in the transverse direction is not correct; namely, the limit model is determined by the wheel no-slip conditions in the longitudinal direction and by the primary Dirac constraints arising owing to the degeneration of the Lagrangian of the system. The methods used to decrease the order of equations, where small slips of wheels are taken into account, can be useful for qualitative analysis of motion of wheeled systems and for solving the problems of estimation and control in real time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号