首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 168 毫秒
1.
正近年来,机器学习、数据驱动等基于数据进行分析和预测的人工智能技术发展迅速,呈现出信息提取能力强、处理速度快等显著优势,目前已渗透到各个学科领域。另一方面,传统计算力学在模拟复杂工况、复杂模型和大变形等问题时,时常会面临物理模型不够完善、计算效率较低、计算精度不足等问题。因此,将知识驱动型的传统计算力学模型与数据驱动型的人工智能计算模型相融合,发展基于人工智能技术的计算力学理论和方法,成为当前计算力学领域的一个重要研究方向,也为解决复杂工程问题提供了新方案,具有非常广阔的应用前景。鉴于此,《固体力学学报》特别组织了《人工智能计算力学》专辑,希望通过该专辑展示国内计算力学工作者在人工智能计算力学这一新兴领域的最新研究成果,可供从事相关领域研究的人员参考。  相似文献   

2.
大数据在全世界发展迅猛, 应用成效显著.大数据独特的思维和方法, 为科学研究与探索提供了全新的范式.力学研究中,高时空分辨率、多参数同步观测与高精度、大规模模拟手段的发展,为力学大数据的发展提供了契机,大数据、机器智能方法的应用正呈现快速上升趋势.本文旨在分析大数据思维方法在力学研究中的应用, 及其启示与挑战.首先从大数据资源、大数据科学及大数据技术3个层面分析了大数据的内涵及研究态势,概括了国内外政府及组织机构的大数据发展规划.而后对比分析了力学思维方法与大数据思维方法的特点,指出两者的本质区别在于数据使用方式的不同而带来的范式差异:大数据采用数据驱动模型替代力学中的偏微分方程组以描述问题,在复杂系统的分析、预测中优势显著.回顾了大数据方法在材料性能预测、材料本构建模、湍流建模、结构健康监测及试验力学等方面的最新研究进展,以及动态数据驱动与数字孪生等大数据驱动的建模模拟新范式.总结了大数据在力学研究中应用的3种方式, 即驱动已有模型改进,挖掘复杂隐含的规律, 以及替代已有的理论方法等. 最后,建议以力学研究为主体和牵引, 大数据与力学双驱动,推动大数据与力学交叉形成理论与方法突破、及学科发展新方向.   相似文献   

3.
李想  严子铭  柳占立  庄茁 《力学进展》2021,51(1):82-105
先进结构材料近年来受到材料和结构设计领域的广泛关注, 这些材料一般通过多个尺度的结构设计实现各种卓越的性能. 在早期的材料设计中, 有的基于设计者的丰富经验, 从天然拓扑结构中抽象出合理的数学力学模型; 有的基于生物系统的结构和功能特点提取出仿生力学模型. 然而, 仅依靠经验性的巧妙设计很难得到最优的设计方案, 通过反复迭代设计和试验来遍历设计空间也不切实际. 为此, 拓扑优化方法被成功应用于声子晶体、元胞材料等先进结构材料的优化设计中, 但现有的拓扑优化方法在实现精准的反向设计方面尚存挑战. 基于数据驱动的机器学习方法擅长建立数据空间多维变量复杂关系, 能够揭示传统力学研究方法难以发现的更深层次的力学机理和规律, 成为力学领域崭新的研究热点. 本文系统地回顾先进结构材料设计方法的发展历程, 对比阐述各种主流设计方法, 结合本课题组的相关工作介绍数值仿真和数据驱动在先进结构材料的智能化设计方面的应用现状, 并对该领域的未来研究趋势进行探讨和展望.   相似文献   

4.
短纤维增强EPDM包覆薄膜超弹性本构模型   总被引:1,自引:0,他引:1  
短纤维增强三元乙丙橡胶(EPDM)包覆薄膜用于一种新型缠绕包覆工艺,主要解决复杂构型自由装填药柱外表面可靠性包覆问题.为了描述其在固体火箭发动机工作过程中产生的大变形、非线性和各向异性等力学行为,根据纤维增强复合材料连续介质力学理论,提出了各向异性超弹性本构模型.该模型中单位体积的应变能函数被解耦成两部分:表征各向同性的橡胶基体应变能和表征各向异性的纤维拉伸应变能,通过引入纤维方向对纤维应变能进行修正,给出了通过单轴拉伸、偏轴拉伸实验数据获取模型参数的具体方法.研究结果表明,该模型能够很好地预测材料在纤维方向0°~45°时的各向异性力学特性,并将预测结果与实验数据对比,误差在5%以下.所建立的各向异性超弹性本构模型准确性高、易于实现数值开发,在一定程度上能够为固体火箭发动机的装药结构完整性分析提供理论依据.  相似文献   

5.
郭晓龙  姚寅  陈少华 《力学学报》2021,53(5):1334-1344
界面在颗粒增强复合材料中起到传递载荷的关键作用, 界面性能对复合材料整体力学行为产生重要影响. 然而由于复合材料内部结构较为复杂, 颗粒与基体间的界面强度和界面断裂韧性难以确定, 尤其是法向与切向界面强度的分别预测缺乏有效方法. 本文以氧化锆颗粒增强聚二甲基硅氧烷(PDMS)复合材料为研究对象, 提出一种预测颗粒增强复合材料界面力学性能的新方法. 首先, 实验获得纯PDMS基体材料及单颗粒填充PDMS试样的单轴拉伸应力$\!-\!$应变曲线, 标定出PDMS基体材料的单轴拉伸超弹性本构关系; 其次, 建立与单颗粒填充试样一致的有限元模型, 选择特定的黏结区模型描述界面力学行为, 通过样品不同阶段拉伸力学响应的实验与数值结果对比, 分别给出颗粒与基体界面的法向强度、切向强度及界面断裂韧性; 进一步应用标定的界面力学参数, 开展不同尺寸及不同数目颗粒填充试样的实验与数值结果比较, 验证界面性能预测结果的合理性. 本文提出的界面力学性能预测方法简便、易操作、精度高, 对定量预测颗粒增强复合材料的力学性能具有一定帮助, 亦对定量预测纤维增强复合材料的界面性能具有一定参考意义.   相似文献   

6.
帘线/橡胶复合材料广泛应用于轮胎等重要工程领域,为了描述其在服役条件下的大变形、非线性、各向异性和高应变率等材料力学行为,基于纤维增强复合材料连续介质力学理论,提出了一种考虑应变率效应的帘线/橡胶复合材料各向异性黏-超弹性本构模型. 该模型中单位体积的应变能被解耦为便于参数识别的基体等容变形能、帘线拉伸变形能、剪切应变能和黏性应变能四部分. 给出了模型参数的确定方法,并通过拟合文献中单轴拉伸、偏轴拉伸实验数据,得到了模型参数. 利用该模型预测了不同加载和变形条件下的力学行为,并将预测结果与实验结果对比分析. 结果表明, 考虑黏性模型和不考虑黏性模型对不同应变率变形条件下的预测结果相差很大,且考虑黏性模型的预测结果与实验结果吻合很好. 因此,与不考虑黏性模型相比,所提出的各向异性黏-超弹性本构模型能更好地表征帘线/橡胶复合材料在大变形、高应变率条件下的力学特性.   相似文献   

7.
纤维增强复合材料层合板弹道冲击研究进展   总被引:19,自引:0,他引:19  
近20多年来, 纤维增强复合材料层合板, 在结构防护领域大量使用, 由于层合板结构及材料特性的复杂, 其弹道吸能机理十分复杂, 影响因素包括靶板的几何尺寸、结构形式、材料力学特性及层间粘结、弹形及弹速等诸多方面.本文主要针对近10年的研究工作, 侧重于实验技术、弹道冲击实验研究、经验公式及理论分析模型等几方面的发展, 进行了回顾和展望.同时, 对于弹道侵彻力历程、材料的动态力学特性以及数值分析技术在层合板弹道冲击问题上的运用及发展等方面, 也进行了简要的介绍.   相似文献   

8.
近年来随着先进自动铺丝技术的发展,生产材料特性随空间位置连续变化的丝束变角度(Variable Angle Tow, VAT)复合材料已成为可能.由此制备的新型复合材料板壳结构不仅具有比传统结构更强的可设计性,而且在提升结构效率方面显示出极大的优越性,是实现航空航天工业装备高性能、轻质化发展的新的重要途径.然而,自动铺丝技术使VAT复合材料板壳结构具有了一般各向异性及面内变刚度特性,给其静动力学问题的分析带来了极大的困难.因此,发展针对该种新型变刚度复合材料板壳结构的力学模型和计算方法至关重要,这也是深入理解其复杂的力学响应机制并进一步促进其在航空航天工程中广泛应用的前提和基础.本文旨在总结近年来有关VAT复合材料板壳结构静动力问题的研究进展,着重从理论分析模型和数值计算方法等方面来简述其最新研究成果,最后讨论了目前VAT复合材料板壳结构静动力问题研究的局限性,并对未来的理论研究进行了展望.  相似文献   

9.
吴文旺  夏热 《力学进展》2022,52(3):673-718
随着先进制造技术、多学科交叉和人工智能科技的飞速发展, 高端装备呈现出轻量化、集成化、复合化、功能化、智能化、柔性化和仿生化等发展趋势. 传统结构研究存在结构设计和制造相互分离, 复杂结构制造效率低、实际制造结构的性能指标和使用可靠性大幅低于设计理论预测、结构多功能一体化程度不足、经济成本过高等问题. 此外, 先进工业装备对材料、结构的使用性能、使用环境要求越来越高, 亟需开展结构的设计、制造、功能、应用一体化研究, 为解决我国先进制造“卡脖子”技术难题提供理论依据和技术支持. 轻量化多功能点阵超结构具有轻质高强、抗冲击吸能、减振降噪等性能优势, 在航空航天、交通运输、国防、生物医疗、能源、机械等工业领域具有巨大的应用潜力. 有鉴于此, 受多晶体微结构的多尺度力学设计启发, 以“点阵超结构力学设计”为主题, 开展点阵超结构的节点、杆件组元, 胞元类型、双相结构、梯度结构、多层级结构等典型点阵超结构的几何构筑和力学设计, 并阐明多晶体多尺度微观结构启发的点阵超结构力学设计基本原理、多功能力学性能调控方法, 以及点阵超结构在不同类型载荷下的结构变形和失效物理机理.   相似文献   

10.
非线性周期性板结构是一类在智能复合材料领域具有巨大应用潜力的结构,因其构成材料的非线性特性,以及结构中经常包含增强纤维、肋板和空洞等复杂微结构导致的材料几何非线性,利用常规的有限元方法进行建模和分析较为困难.本文提出了一种结构基因法,通过提取非线性周期性板结构的最小模型单元作为其结构基因,将异质周期性板结构等效为均质板结构,便捷地求解了非线性周期性板结构的微观力学性能和整体等效力学性能.算例表明,结构基因方法可用来分析复杂非线性复合材料结构问题,计算结果精度足够,为复合材料微观力学研究提供了有价值的参考.  相似文献   

11.
等几何分析采用样条基函数构造几何模型和实施变量近似,实现了计算机辅助设计和辅助工程的无缝连接,并已广泛应用于弹性力学、电磁场和位势问题等领域.然而直接采用等几何方法难以构造复杂模型,限制了该方法在大规模实际工程问题上的应用.细分曲面法可用于克服这一问题,该方法对传统模型的离散网格进行细分和拟合操作,构造出极限光滑曲面,连续性更高,对复杂结构的适用性更强.该方法主要有以下优点:(1)适用于任意拓扑结构;(2)数值计算稳定;(3)实施简单;(4)局部细化与连续性控制.由于该方法在复杂结构模型构造方面具有较强的灵活性和便利性,已被广泛应用于航空航天、汽车、动画、游戏制作等建模领域.将细分曲面法与边界元法相结合进行结构声学分析,几何场与物理场均采用箱样条基函数进行插值近似.以黏附吸声材料结构的声散射问题为例,建立吸声材料分布拓扑优化数学模型,并采用移动渐进线算法进行设计变量更新,最终获得最优材料分布.   相似文献   

12.
从静/动态空腔膨胀模型的理论体系出发,介绍了空腔膨胀模型在不同方向上取得的成果,主要涉及理想侵彻条件的空腔膨胀压力计算模型及数值模拟方法和空腔膨胀模型在典型侵彻问题及复杂弹靶条件下的应用。在理想侵彻条件下的空腔膨胀压力计算模型中,主要讨论了靶体材料、屈服准则和状态方程对空腔边界应力的影响规律及空腔膨胀模型的适用性问题;根据数值模拟中初始条件的不同,介绍了空腔表面恒定速度/恒定压力两种数值模拟方法,证明了数值模拟方法的可靠性;整理了空腔膨胀模型的基本假设、适用范围、工程应用特点,列举了其在典型侵彻问题及多层复合靶板、约束靶体、弹体刻槽和异形截面形状弹体等复杂弹靶条件下的应用。针对空腔膨胀模型的研究现状,总结了目前空腔膨胀模型在冲击动力学领域的应用方向,归纳了空腔膨胀模型应用中尚存在的问题,展望了空腔膨胀模型下一步的重点发展方向。  相似文献   

13.
群体建筑风环境的数值模拟及分析   总被引:1,自引:0,他引:1  
群体建筑的布局优化及结构抗风设计都需要准确预测建筑群的风环境.针对风环境研究的必要性, 将气体流场数值模拟(CFD)方法引入建筑群风场效应的预测和研究中,侧重模拟分析了建筑群的布局改变而引起的风速及风压场的变化,获得了特定情形下较合理的气动布局;同时表明数值模拟方法可以作为风洞试验的前期预测手段,并为群体建筑的布局优化及结构抗风设计提供科学依据.  相似文献   

14.
金属增材制造是一种兼顾复杂结构和高性能构件成形需求的颠覆性制造技术, 在航空、航天、交通、核电等领域具有广阔的应用前景和发展空间. 该技术大规模推广应用所面临的制造效率和控形保性挑战是一个涉及力学、光学、材料、机械、控制等多学科交叉的难题. 本文针对其中涉及的若干关键力学问题, 阐述了近年来国内外在面向金属增材制造的结构拓扑优化设计、制造过程数值模拟、成形材料与结构的缺陷表征和性能评价方面的研究进展, 并对金属增材制造的结构设计?制造模拟?性能评价的发展趋势进行了展望.   相似文献   

15.
王超  徐斌  段尊义  荣见华 《力学学报》2021,53(4):1070-1080
增材制造与拓扑优化的有机结合将极大促进高性能产品的研发, 但现有基于拓扑优化的设计性能和可制造性研究多是独立开展, 或常局限于传统的刚度问题, 缺乏对工程中至关重要的强度问题的考虑. 面向增材制造, 针对协同考虑强度和可制造连通性的结构优化问题, 建立了材料体积和连通性标量场约束下的结构应力最小化拓扑优化模型. 针对求解过程中的不同数值困难问题, 提出了有效的优化求解策略. 引入基于P范数的全局标量场约束度量, 并结合稳定转换误差修正技术来实现对局部标量场的有效控制. 详细推导了相关灵敏度, 然后通过典型数值算例论证了文中模型及方法的合理有效性. 结果表明, 仅考虑连通性约束的刚度最大化设计不一定能避免局部高应力集中, 而该设计也不一定等同于应力最小化连通性设计; 充足的材料许用量和恰当的连通性约束边界条件对提高所研究设计的性能至关重要, 而应力凝聚参数取值并非越大越好, 合理取值才能有助于获取高性能设计. 此外, 优化结果也在一定程度上论证了可制造性拓扑优化中考虑强度问题的必要性和可行性.   相似文献   

16.
传统优化设计认为问题的参数(如材料属性和外加载荷等)是确定的,并且设计变量通常是连续的.而在实际应用中产品制造和测量等存在不可避免的误差,并且工程需要的设计结果(如钢筋截面尺寸等)往往是离散的.即使对于考虑了不确定性参数影响的连续最优解,经过圆整处理后也很可能产生较大偏差甚至变得不可行.针对该难点,本文结合非概率不确定性鲁棒优化算法,建立与离散的基于圆整策略的优化算法列式等价的鲁棒优化列式及用于解决离散优化问题的可置信性鲁棒优化方法.并进一步研究了离散变量不确定性优化问题的可置信性鲁棒优化求解方法,利用非线性半定规划进行高效求解,可严格保证所得结果的可行性.本文揭示了传统离散优化思想和不确定性优化思想的内在联系,完善了优化设计理论体系,为后续相关研究提供了全新思路和示范.  相似文献   

17.
金属材料在冲击、爆炸等高应变率加载下的塑性流动行为具有不同于静载下的率-温耦合性和微观机制。航空航天、航海、能源开采、核工业、公共安全、灾害防治等方面的金属结构设计与性能评估需要进行大量的动载实验和数值模拟,建立准确的材料动态本构模型是结构数值模拟可靠性的基础和关键。本文中,总结了金属材料的率-温耦合变形行为及内在机理,回顾了金属动态本构关系研究的起源与发展脉络,分别针对唯象模型、具有物理基础的模型和人工神经网络模型进行了详细介绍和横向比较。唯象模型和人工神经网络模型分别因易应用和高预测精度而受到青睐,基于物理概念的宏观连续介质模型可以描述体现内部演化的真实物理量,从而涵盖更大的应变范围,更好地反映应变率、温度和应变的影响机制。  相似文献   

18.
黄垲轩  丁喆  张严  李小白 《力学学报》2023,55(2):433-444
随着增材制造技术的迅速发展, 点阵结构由于其高比强度、高比刚度等优异力学性能受到广泛关注, 但其单胞分布设计大多基于均布式假设, 导致其承载能力相对较差. 基于拓扑优化技术提出了一种梯度分层的点阵结构设计方法. 首先, 基于水平集函数建立点阵单胞几何构型的显式描述模型, 引入形状插值技术实现点阵单胞的梯度构型生成; 其次, 构建基于Kriging的梯度点阵单胞宏观等效力学属性预测模型, 建立宏观有限单元密度与微观点阵单胞等效力学属性的内在联系; 然后, 以点阵结构刚度最大为优化目标, 结构材料用量和力学控制方程为约束条件, 构建点阵结构的梯度分层拓扑优化模型, 并采用OC算法进行数值求解. 算例结果表明, 所提方法可实现点阵结构的最优梯度分层设计, 充分提高了点阵结构的承载性能, 同时可保证不同梯度点阵单胞之间的几何连续性. 最后, 开展梯度分层点阵结构与传统均匀点阵结构和线性梯度点阵结构的准静态压缩仿真分析, 仿真结果表明, 与传统均匀点阵结构和线性梯度点阵结构相比, 梯度分层点阵结构的承载能力明显提高. 研究结果可为高承载点阵结构设计提供理论参考.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号