首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

2.
The present paper is devoted to the theoretical study of the secondary flow induced around a sphere in an oscillating stream of an elastico-viscous liquid. The boundary layer equations are derived following Wang's method and solved by the method of successive approximations. The effect of elasticity of the liquid is to produce a reverse flow in the region close to the surface of the sphere and to shift the entire flow pattern towards the main flow. The resistance on the surface of the sphere and the steady secondary inflow increase with the elasticity of the liquid.Nomenclature a radius of the sphere - b ik contravariant components of a tensor - e contravariant components of the rate of strain tensor - F() see (47) - G total nondimensional resistance on the surface of the sphere - g ik covariant components of the metric tensor - f, g, h secondary flow components introduced in (34) - k 0 measure of relaxation time minus retardation time (elastico-viscous parameter) - K =k 0 2/V 0 2 , nondimensional parameter characterizing the elasticity of the liquid - n measure of the ratio of the boundary layer thickness and the oscillation amplitude - N, T defined in (44) - p arbitrary isotropic pressure - p ik covariant components of the stress tensor - p ik contravariant components of the stress tensor associated with the change of shape of the material - R =V 0 a/v, the Reynolds number - S =a/V 0, the Strouhall number - r, , spherical polar coordinates - u, v, w r, , component of velocity - t time - V(, t) potential velocity distribution around the sphere - V 0 characteristic velocity - u, v, t, y, P nondimensional quantities defined in (15) - reciprocal of s - density - defined in (32) - defined in (42) - 0 limiting viscosity for very small changes in deformation velocity - complex conjugate of - oscillation frequency - = 0/, the kinematic coefficient of viscosity - , defined in (52) - (, y) stream function defined in (45) - =(NT/2n)1/2 y - /t convective time derivative (1) ik   相似文献   

3.
Let D R N be a cone with vertex at the origin i.e., D = (0, )x where S N–1 and x D if and only if x = (r, ) with r=¦x¦, . We consider the initial boundary value problem: u t = u+u p in D×(0, T), u=0 on Dx(0, T) with u(x, 0)=u 0(x) 0. Let 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on and let + denote the positive root of (+N–2) = 1. Let p * = 1 + 2/(N + +). If 1 < p < p *, no positive global solution exists. If p>p *, positive global solutions do exist. Extensions are given to the same problem for u t=+¦x¦ u p .This research was supported in part by the Air Force Office of Scientific Research under Grant # AFOSR 88-0031 and in part by NSF Grant DMS-8 822 788. The United States Government is authorized to reproduce and distribute reprints for governmental purposes not withstanding any copyright notation therein.  相似文献   

4.
The results of laboratory observations of the deformation of deep water gravity waves leading to wave breaking are reported. The specially developed visualization technique which was used is described. A preliminary analysis of the results has led to similar conclusions than recently developed theories. As a main fact, the observed wave breaking appears as the result of, first, a modulational instability which causes the local wave steepness to approach a maximum and, second, a rapidly growing instability leading directly to the breaking.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness =H/L - crest steepness =/L - trough steepness =/L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness =/F 1 - crest rear steepness =/F 2 - vertical asymmetry factor=F 2/F 1 (describing the wave asymmetry with respect to a vertical axis through the wave crest) - µ horizontal asymmetry factor=/H (describing the wave asymmetry with respect to a horizontal axis: SWL) - T 0 wavemaker period - L 0 theoretical wave length of a small amplitude sinusoïdal wave generated at T inf0 sup–1 frequency - 0 average wave height  相似文献   

5.
Control of low-speed turbulent separated flow using jet vortex generators   总被引:3,自引:0,他引:3  
A parametric study has been performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulent flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and jet location (distance from the separation region in the free-stream direction). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).Nomenclature C p pressure coefficient, 2(P-P)/V 2 - C Q total flow coefficient, Q/ v - D 0 jet orifice diameter - Q total volumetric flow rate - R Reynolds number based on momentum thickness - u fluctuating velocity component in the free-stream (x) direction - V free-stream flow speed - VR ratio of jet speed to free-stream flow speed - x coordinate along the wall in the free-stream direction - jet inclination angle (angle between the jet axis and the wall) - jet azimuthal angle (angle between the jet axis and the free-stream direction in a horizontal plane) - boundary-layer thickness - momentum thickness - lateral distance between jet orifices A version of this paper was presented at the 12th Symposium on Turbulence, University of Missouri-Rolla, 24–26 Sept. 1990  相似文献   

6.
The exact solution of the equation of motion of a circular disk accelerated along its axis of symmetry due to an arbitrarily applied force in an otherwise still, incompressible, viscous fluid of infinite extent is obtained. The fluid resistance considered in this paper is the Stokes-flow drag which consists of the added mass effect, steady state drag, and the effect of the history of the motion. The solutions for the velocity and displacement of the circular disk are presented in explicit forms for the cases of constant and impulsive forcing functions. The importance of the effect of the history of the motion is discussed.Nomenclature a radius of the circular disk - b one half of the thickness of the circular disk - C dimensionless form of C 1 - C 1 magnitude of the constant force - D fluid drag force - f(t) externally applied force - F() dimensionaless form of applied force - F 0 initial value of F - g gravitational acceleration - H() Heaviside step function - k magnitude of impulsive force - K dimensionless form of k - M a dimensionless parameter equals to (1+37#x03C0;s/4f) - S displacement of disk - t time - t 1 time of application of impulsive force - u velocity of the disk - V dimensionless velocity - V 0 initial velocity of V - V t terminal velocity - parameter in (13) - parameter in (13) - (t) Dirac delta function - ratio of b/a - () function given in (5) - dynamical viscosity of the fluid - kinematic viscosity of the fluid - f fluid density - s mass density of the circular disk - dimensionless time - i dimensionless form of t i - dummy variable - dummy variable  相似文献   

7.
A finite element method is used to solve the full Navier-Stokes and energy equations for the problems of laminar combined convection from three isothermal heat horizontal cylinders in staggered tube-bank and four isothermal heat horizontal cylinders in in-line tube-bank. The variations of surface shear stress, pressure and Nusselt number are obtained over the entire cylinder surface including the zone beyond the separation point. The predicted values of total, pressure and friction drag coefficients, average Nusselt number and the plots of velocity flow fields and isotherms are also presented.
Die Finite-Elemente-Lösung von laminarer Strömung und kombinierter Konvektion von Luft in einer versetzten oder fluchtenden Rohranordnung
Zusammenfassung Eine Methode der finiten Elemente wird zur Lösung der vollständigen Navier-Stokes- und der Energiegleichung für die Probleme der laminaren kombinierten Konvektion an drei isothermen geheizten horizontalen Zylindern in versetzter Rohranordnung sowie für vier isotherme geheizte horizontale Zylinder in fluchtender Anordnung verwendet.Die Veränderung der Wandschubspannung, des Druckes und der Nusselt-Zahl werden für die gesamte Zylinderoberfläche, einschließlich des Bereiches nach dem Ablösepunkt, bestimmt. Die Werte des gesamten Widerstandsbeiwertes aufgrund von Druck und Reibung, die durchschnittliche Nusselt-Zahl und die Diagramme des Geschwindigkeitsfeldes und der Isothermen werden ebenfalls aufgezeigt.

Nomenclature C specifie heat - C D total drag coefficient - C f friction drag coefficient - C p pressure drag coefficient - D diameter of cylinder,L=2R 0 - G, g gravitational acceleration - Gr Grashof number, g(TwT )D 3/v 2 - h local heat transfer coefficient - K thermal conductivity - L spacing between the centers of cylinder - M l shape function - N i shape function - Nu, local and average Nusselt numbers - P dimensionless pressure, p*/u 2 - p *,p pressure, free stream pressure - Pe Peclet number,RePr - Pr Prandtl number, c/K - Ra Rayleigh number,Gr Pr - Re Reynolds number,Du /v - R 0 radius of cylinder - T temperature - T w temperature on cylinder surface with fixed value - T free stream temperature - v dimensionless x-direction component of velocity,v */u - u * x-direction component of velocity - u free stream velocity - v dimensionless Y-direction component of velocity,v */u - v * Y-direction component of velocity - X x-direction axis - x dimensionless x-direction coordinate,x */D - x* x-direction coordinate - Y Y-direction axis - y dimensionless Y-direction coordinate,y */D - y * Y-direction coordinate Greek symbols coefficient of volumetric thermal expansion - plane angle - dynamic viscosity - kinematic viscosity, / - density of fluid - w dimensionless surface shear stress, * w /u 2 - skw/* surface shear stress - dimensionless temperature,   相似文献   

8.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

9.
A new procedure for the reduction of Preston tube data is introduced, based on the van Driest transformation. It appears to give results agreeing with the better calibration experiments, although a significant assumption in its derivation is violated.List of Symbols M s Mach number sensed by Preston tube - M Friction Mach number (=u/wall sound speed) - R Gas constant - T w Wall temperature - d Diameter of Preston tube - h Height of effective centre of Preston tube - p Preston tube pressure difference reading - p i Equivalent incompressible Preston tube reading - p w Wall pressure - r Recovery factor (=0.896) - u Friction velocity (=[w/wall density]1/2) - Empirical constant allowing for departure from Crocco temperature-velocity correlation (=0.975) - Specific heat ratio - Fluid kinematic viscosity - w Wall shear-stress  相似文献   

10.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

11.
Calculations of the flow of the mixture 0.94 CO2+0.05 N2+0.01 Ar past the forward portion of segmentai bodies are presented. The temperature, pressure, and concentration distributions are given as a function of the pressure ahead of the shock wave and the body velocity. Analysis of the concentration distribution makes it possible to formulate a simplified model for the chemical reaction kinetics in the shock layer that reflects the primary flow characteristics. The density distributions are used to verify the validity of the binary similarity law throughout the shock layer region calculated.The flow of a CO2+N2+Ar gas mixture of varying composition past a spherical nose was examined in [1]. The basic flow properties in the shock layer were studied, particularly flow dependence on the free-stream CO2 and N2 concentration.New revised data on the properties of the Venusian atmosphere have appeared in the literature [2, 3] One is the dominant CO2 concentration. This finding permits more rigorous formulation of the problem of blunt body motion in the Venus atmosphere, and attention can be concentrated on revising the CO2 thermodynamic and kinetic properties that must be used in the calculation.The problem of supersonic nonequilibrium flow past a blunt body is solved within the framework of the problem formulation of [4].Notation V body velocity - shock wave standoff - universal gas constant - ratio of frozen specific heats - hRt/m enthalpy per unit mass undisturbed stream P pressure - density - T temperature - m molecular weight - cp specific heat at constant pressure - (X) concentration of component X (number of particles in unit mass) - R body radius of curvature at the stagnation point - j rate of j-th chemical reaction shock layer P V 2 pressure - density - TT temperature - mm molecular weight Translated from Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, Vol. 5, No. 2, pp. 67–72, March–April, 1970.The author thanks V. P. Stulov for guidance in this study.  相似文献   

12.
Diffusion in anisotropic porous media   总被引:2,自引:0,他引:2  
An experimental system was constructed in order to measure the two distinct components of the effective diffusivity tensor in transversely isotropic, unconsolidated porous media. Measurements were made for porous media consisting of glass spheres, mica particles, and disks made from mylar sheets. Both the particle geometry and the void fraction of the porous media were determined experimentally, and theoretical calculations for the two components of the effective diffusivity tensor were carried out. The comparison between theory and experiment clearly indicates that the void fraction and particle geometry are insufficient to characterize the process of diffusion in anisotropic porous media. Roman Letters A interfacial area between - and -phases for the macroscopic system, m2 - A e area of entrances and exits of the -phase for the macroscopic system, m2 - A interfacial area contained within the averaging volume, m2 - a characteristic length of a particle, m - b average thickness of a particle, m - c A concentration of species A, moles/m3 - c o reference concentration of species A, moles/m3 - c A intrinsic phase average concentration of species A, moles/m3 - c a c Ac A, spatial deviation concentration of species A, moles/m3 - C c A/c 0, dimensionless concentration of species A - binary molecular diffusion coefficient, m2/s - D eff effective diffusivity tensor, m2/s - D xx component of the effective diffusivity tensor associated with diffusion parallel to the bedding plane, m2/s - D yy component of the effective diffusivity tensor associated with diffusion perpendicular to the bedding plane, m2/s - D eff effective diffusivity for isotropic systems, m2/s - f vector field that maps c A on to c a , m - h depth of the mixing chamber, m  相似文献   

13.
T. Dabak  O. Yucel 《Rheologica Acta》1986,25(5):527-533
A method is proposed for determining the shear viscosity behavior of highly concentrated suspensions at low and high shear-rates through the use of a formulation that is a function of three parameters signifying the effects of particle size distribution. These parameters are the intrinsic viscosity [], a parametern that reflects the level of particle association at the initiation of motion and the maximum packing concentration m. The formulation reduces to the modified Eilers equation withn = 2 for high shear rates. An analytical method was used for the calculation of maximum packing concentration which was subsequently correlated with the experimental values to account for the surface induced interaction of particles with the fluid. The calculated values of viscosities at low and high shear-rates were found to be in good agreement with various experimental data reported in literature. A brief discussion is also offered on the reliability of the methods of measuring the maximum packing concentration. r = /0 relative viscosity of the suspension - volumetric concentration of solids - k n coefficient which characterizes a specific effect of particle interactions - m maximum packing concentration - r,0 relative viscosity at low shear-rates - [] intrinsic viscosity - n, n parameter that reflects the level of particle interactions at low and high shear-rates, respectively - r, relative viscosity at high shear-rates - (m)s, (m)i, (m)l packing factors for small, intermediate and large diameter classes - v s, vi, vl volume fractions of small, intermediate and large diameter classes, respectively - si, sl coefficient to be used in relating a smaller to an intermediate and larger particle group, respectively - is, il coefficient to be used in relating an intermediate to a smaller and larger particle group, respectively - ls, li coefficient to be used in relating a larger to a smaller and intermediate particle group, respectively - m0 maximum packing concentration for binary mixtures - m,e measured maximum packing concentration - m,c calculated maximum packing concentration  相似文献   

14.
The effects of finite measuring volume length on laser velocimetry measurements of turbulent boundary layers were studied. Four different effective measuring volume lengths, ranging in spanwise extent from 7 to 44 viscous units, were used in a low Reynolds number (Re=1440) turbulent boundary layer with high data density. Reynolds shear stress profiles in the near-wall region show that u v strongly depends on the measuring volume length; at a given y-position, u v decreases with increasing measuring volume length. This dependence was attributed to simultaneous validations on the U and V channels of Doppler bursts coming from different particles within the measuring volume. Moments of the streamwise velocity showed a slight dependence on measuring volume length, indicating that spatial averaging effects well known for hot-films and hot-wires can occur in laser velocimetry measurements when the data density is high.List of symbols time-averaged quantity - u wall friction velocity, ( w /)1/2 - v kinematic viscosity - d p pinhole diameter - l eff spanwise extent of LDV measuring volume viewed by photomultiplier - l + non-dimensional length of measuring volume, l eff u /v - y + non-dimensional coordinate in spanwise direction, y u /v - z + non-dimensional coordinate in spanwise direction, z u /v - U + non-dimensional mean velocity, /u - u instantaneous streamwise velocity fluctuation, U &#x2329;U - v instantaneous normal velocity fluctuation, V–V - u RMS streamwise velocity fluctuation, u 21/2 - v RMS normal velocity fluctuation, v 21/2 - Re Reynolds number based on momentum thickness, U 0/v - R uv cross-correlation coefficient, u v/u v - R12(0, 0, z) two point correlation between u and v with z-separation, <u(0, 0, 0) v (0, 0, z)>/<u(0, 0, 0) v (0, 0, 0)> - N rate at which bursts are validated by counter processor - T Taylor time microscale, u (dv/dt2)–1/2  相似文献   

15.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

16.
P. H. Ong 《Rheologica Acta》1970,9(2):299-305
Summary The dielectric properties of the composite system polyurethane-sodium chloride have been measured at frequencies between 10–4 Hz and 3 · 105 Hz in the temperature range from –150 °C up to +90 dgC. Three dielectric loss mechanisms have been found; they are indicated by 1, 2 and. The activation energy of the 1-transition is 35 kcal/mole, that of the-transition 6.7 kcal/mole. The 2-loss peak was only observed at frequencies of 103 Hz and higher, forming one broad peak with the 1-loss peak at lower frequencies. In the composite materials, the- and 2-loss peaks measured at fixed frequencies were found at the same temperature. The 2-loss peak, however, was shifted to a lower temperature, due to the sodium chloride filler. Comparison of experimental data of and tan with theoretical predictions concerning the dielectric properties of composite systems showed only partial agreement. The difference mainly consisted in. the temperature shift in the tan-peak of the 1-transition.
Zusammenfassung Die dielektrischen Eigenschaften des Verbundssystems Kochsalz-Polyurethankautschuk wurden im Frequenzgebiet zwischen 10–4 Hz und 3.105 Hz und im Temperaturbereich von –150 °C bis +90 °C gemessen. Es wurden drei dielektrische Verlustmaxima gefunden, die mit 1, 2 und angedeutet werden. Die Aktivierungsenergie des 1-Überganges beträgt 35 kcal/Mol, die des-Überganges 6.7 kcal/Mol. Das 2-Maximum konnte nur bei Frequenzen höher als 103Hz vom 1-Maximum gesondert erfaßt werden. Die Lage der 2- und-Maxima war vom Füllgrad unabhängig. Das 1-Maximum verschiebt sich mit steigendem Füllgrad zu niedrigeren Temperaturen. Die gemessenen Werte von und tan stimmen nur teilweise mit den Aussagen einer Theorie der dielektrischen Eigenschaften von Mischkörpern überein.
  相似文献   

17.
Heat and mass transfer at a vertical surface is examined in the case of combined free and forced convection. The boundary layer equations, transformed to ordinary differential equations, contain a parameter that determines the effect of free convection on the forced motion. Criteria are offered for differentiating the free-convection, forced-convection, and combined regimes.Notation x, y coordinates - u, v velocity components - g acceleration of gravity - T temperature - kinematic viscosity - coefficient of thermal expansion - a thermal diffusivity - 1 partial vapor density - D diffusion coefficient - W2 mass velocity of air - independent variable - w shear stress at wall - thermal conductivity - r latent heat of phase transition - , dimensionless temperature and partial vapor density - m* the complex (m 1m 1w )/(1–m(1w ) - cp specific heat at constant pressure - G Grashof number - R Reynolds number - P Prandtl number - S Schmidt number  相似文献   

18.
The theory of a vibrating-rod viscometer   总被引:3,自引:0,他引:3  
The paper presents a complete theory for a viscometer based upon the principle of a circular-section rod, immersed in a fluid, performing transverse oscillations perpendicular to its axis. The theory is established as a result of a detailed analysis of the fluid flow around the rod and is subject to a number of criteria which subsequently constrain the design of an instrument. Using water as an example it is shown that a practical instrument can be designed so as to enable viscosity measurement with an accuracy of ±0.1%, although it is noted that many earlier instruments failed to satisfy one or more of the newly-established constraints.Nomenclature A, D constants in equation (46) - A m , B m , C m , D m constants in equations (50) and (51) - A j , B j constants in equation (14) - a j + , a j wavenumbers given by equation (15) - C f drag coefficient defined in equation (53) - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - f(z) initial deformation of rod - f(), F m () functions of defined in equation (41) - F force in the rod - force per unit length near t=0 - F dimensionless force per unit length near t=0 - g m amplitude of transient force - G modulus of rigidity - h, h* functions defined by equations (71) and (72) - H functions defined by equation (69) and (70) - I second moment of area - I 0,1, J 0,1, K 0,1 modified Bessel functions - k, k functions defined in equations (2) - L half-length of oscillator - Ma Mach number - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equations (15) and (16) - R radius of rod - R c radius of container - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - y 0 initial lateral displacement - y 1, y 2 successive maximum lateral displacement - z axial coordinate - dimensionless tension - dimensionless mass of fluid - dimensionless drag of fluid - amplification factor - logarithmic decrement in a fluid - a , b logarithmic decrement in fluids a and b - 0 logarithmic decrement in vacuo - j logarithmic decrement in mode j in a fluid - spatial resolution of amplitude - v voltage resolution - r, , , s, , increments in R, , , s , , - dimensionless amplitude of oscillation - dimensionless axial coordinate - angular coordinate - f thermal conductivity of fluid - viscosity of fluid - viscosity of fluid calculated on assumption that * - a , b viscosity of fluids a and b - m constants in equation (10) - dimensionless displacement - j j the component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - spatial component of defined in equation (11) - j , tm jth, mth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - streamfunction - dimensionless frequency (based on ) - angular frequency - 0 angular frequency in absence of fluid and internal damping - j angular frequency in mode j in a fluid - a , b frequencies in fluids a and b  相似文献   

19.
The theory of a vibrating-rod densimeter   总被引:1,自引:0,他引:1  
The paper presents a theory of a device for the accurate determination of the density of fluids over a wide range of thermodynamic states. The instrument is based upon the measurement of the characteristics of the resonance of a circular section tube, or rod, performing steady, transverse oscillations in the fluid. The theory developed accounts for the fluid motion external to the rod as well as the mechanical motion of the rod and is valid over a defined range of conditions. A complete set of working equations and corrections is obtained for the instrument which, together with the limits of the validity of the theory, prescribe the parameters of a practical design capable of high accuracy.Nomenclature A, B, C, D constants in equation (60) - A j , B j constants in equation (18) - a j + , a j wavenumbers given by equation (19) - C f drag coefficient defined in equation (64) - C f /0 , C f /1 components of C f in series expansion in powers of - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - force per unit length - F j + , F j constants in equation (24) - f, g functions of defined in equations (56) - G modulus of rigidity - I second moment of area - K constant in equation (90) - k, k constants defined in equations (9) - L half-length of oscillator - Ma Mach number - m a mass per unit length of fluid a - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equation (17) - P power (energy per cycle) - P a , P b power in fluids a and b - p pressure - R radius of rod or outer radius of tube - R c radius of container - R i inner radius of tube - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - z axial coordinate - dimensionless tension - a dimensionless mass of fluid a - b dimensionless added mass of fluid b - b dimensionless drag of fluid b - dimensionless parameter associated with - 0 dimensionless coefficient of internal damping - dimensionless half-width of resonance curve - dimensionless frequency difference defined in equation (87) - spatial resolution of amplitude - R, , , s , increments in R, , , s , - dimensionless amplitude of oscillation - dimensionless axial coordinate - ratio of to - a , b ratios of to for fluids a and b - angular coordinate - parameter arising from distortion of initially plane cross-sections - f thermal conductivity of fluid - dimensionless parameter associated with - viscosity of fluid - a , b viscosity of fluids a and b - dimensionless displacement - j jth component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - density of fluid calculated on assumption that * - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - rr rr, r radial normal and shear stress components - spatial component of defined in equation (13) - j jth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - phase angle - r phase difference - ra , rb phase difference for fluids a and b - streamfunction - j jth component defined in equation (22) - dimensionless frequency (based on ) - a , b dimensionless frequency in fluids a and b - s dimensionless frequency (based on s ) - angular frequency - 0 resonant frequency in absence of fluid and internal damping - r resonant frequency in absence of internal fluid - ra , rb resonant frequencies in fluids a and b - dimensionless frequency - dimensionless frequency when a vanishes - dimensionless frequencies when a vanishes in fluids a and b - dimensionless resonant frequency when a , b, b and 0 vanish - dimensionless resonant frequency when a , b and b vanish - dimensionless resonant frequency when b and b vanish - dimensionless frequencies at which amplitude is half that at resonance  相似文献   

20.
In this paper, we show that the maximum principle holds for quasilinear elliptic equations with quadratic growth under general structure conditions.Two typical particular cases of our results are the following. On one hand, we prove that the equation (1) {ie77-01} where {ie77-02} and {ie77-03} satisfies the maximum principle for solutions in H 1()L(), i.e., that two solutions u 1, u 2H1() L() of (1) such that u 1u2 on , satisfy u 1u2 in . This implies in particular the uniqueness of the solution of (1) in H 0 1 ()L().On the other hand, we prove that the equation (2) {ie77-04} where fH–1() and g(u)>0, g(0)=0, satisfies the maximum principle for solutions uH1() such that g(u)¦Du|{2L1(). Again this implies the uniqueness of the solution of (2) in the class uH 0 1 () with g(u)¦Du|{2L1().In both cases, the method of proof consists in making a certain change of function u=(v) in equation (1) or (2), and in proving that the transformed equation, which is of the form (3) {ie77-05}satisfies a certain structure condition, which using ((v1 -v 2)+)n for some n>0 as a test function, allows us to prove the maximum principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号