首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 428 毫秒
1.
挠曲电效应是应变梯度与电极化的耦合,它存在于所有的电介质材料中。在纳米电介质结构的挠曲电效应研究中,应变梯度弹性对挠曲电响应的影响一直以来被低估甚至被忽略了。根据广义应变梯度理论,应变梯度弹性中独立的尺度参数只有三个,而文献中所采用的一个或两个尺度参数的应变梯度理论只是它的简化形式。基于该理论,论文建立了考虑广义应变梯度弹性的三维电介质结构的理论模型,并以一维纳米梁为例研究了其弯曲问题的挠曲电响应及其能量俘获特性。结果表明,纳米梁的挠曲电响应存在尺寸效应,并且弹性应变梯度会影响结构挠曲电的尺寸效应,特别是当结构的特征尺寸低于尺度参数时。论文的工作为更进一步理解纳米尺度下的挠曲电机理和能量俘获特性提供理论基础和设计依据。  相似文献   

2.
挠曲电效应指应变梯度在电介质中引起的电极化现象,是一种普遍存在的力电耦合行为。应变梯度与材料的尺寸成反比,因此挠曲电效应有望在纳米尺度主导材料的物理性质,尤其是力电耦合性能。本文建立了悬臂梁挠曲电俘能器的理论模型,基于哈密顿原理得到了悬臂梁挠曲电俘能器的控制方程和相应的边界条件;进一步,得到了悬臂梁挠曲电俘能器的输出电压频率响应和功率密度频率响应随悬臂梁的振动频率、外电路阻抗、挠曲电层厚度以及弹性层模量的变化规律。聚偏氟乙烯和环氧树脂层合挠曲电悬臂梁俘能器模型的数值结果表明输出电压频率响应和功率密度频率响应在共振频率点取得最大值,且随着各阶模态对应的共振频率的增加悬臂梁挠曲电俘能器的输出电压和功率密度均增加。此外,计算结果还表明悬臂梁俘能器存在最佳匹配阻抗,在匹配阻抗附近悬臂梁俘能器的输出功率密度随挠曲电层厚度的减小而增大,表现出明显的尺寸效应。本文工作提供了一种基于挠曲电效应的悬臂梁俘能器的理论模型,为悬臂梁俘能器的设计提供了理论依据。  相似文献   

3.
挠曲电效应通常描述为非均匀变形如应变梯度引起的电极化或者电场梯度引起的变形。由于应变梯度能够局部破坏晶体的反演对称从而在材料中诱导电极化,因此挠曲电效应是固体电介质材料中普遍存在的一种力电耦合效应。由于应变梯度和电场梯度均随材料尺寸的减小而迅速增大,在宏观尺度通常被忽略的挠曲电效应在微纳尺度反而起着非常重要的作用,会显著影响材料的物理性能。与压电效应和电致伸缩效应相比,挠曲电效应具有独特的尺寸依赖特征,其不受材料对称性和铁电材料居里相变温度的限制。本文综述了固体电介质中的挠曲电效应,并重点从理论、材料和应用方面综述了固体电介质中挠曲电效应的研究进展,对挠曲电效应的独特性能进行了详细地讨论,最后本文展望了固体电介质中挠曲电效应相关研究的开放性问题和发展方向。  相似文献   

4.
挠曲电效应指应变梯度在电介质中引起的电极化现象,是一种普遍存在的力电耦合行为。应变梯度与材料的尺寸成反比,因此挠曲电效应有望在纳米尺度主导材料的物理性质,尤其是力电耦合性能。本文建立了悬臂梁挠曲电俘能器的理论模型,基于哈密顿原理得到了悬臂梁挠曲电俘能器的控制方程和相应的边界条件;进一步,得到了悬臂梁挠曲电俘能器的输出电压频率响应和功率密度频率响应随悬臂梁的振动频率、外电路阻抗、挠曲电层厚度以及弹性层模量的变化规律。聚偏氟乙烯和环氧树脂层合挠曲电悬臂梁俘能器模型的数值结果表明输出电压频率响应和功率密度频率响应在共振频率点取得最大值,且随着各阶模态对应的共振频率的增加悬臂梁挠曲电俘能器的输出电压和功率密度均增加。此外,计算结果还表明悬臂梁俘能器存在最佳匹配阻抗,在匹配阻抗附近悬臂梁俘能器的输出功率密度随挠曲电层厚度的减小而增大,表现出明显的尺寸效应。本文工作提供了一种基于挠曲电效应的悬臂梁俘能器的理论模型,为悬臂梁俘能器的设计提供了理论依据。  相似文献   

5.
宋铭  鄢之 《固体力学学报》2020,41(5):444-454
摘要:挠曲电效应是由应变梯度引起的,与尺度相关的力电耦合效应。基于Kirchhoff板假设和挠曲电理论,本文推导了温度和电压作用下的压电薄板力-电-热耦合微分控制方程,定量分析了微分控制方程中非线性项的影响,并针对四周固支压电薄板采用Ritz法求解,数值计算了压电薄板的弯曲和振动行为。在研究温度和挠曲电效应对薄板耦合特性和力学行为的影响时,本文分别考虑了材料系数不随温度变化和随温度线性变化两种情况。以PZT-5H为例,我们讨论了挠曲电和温度对压电薄板的横向位移和固有频率的影响。研究结果表明挠曲电效应对压电纳米薄板的力学行为影响很大,且具有明显的尺寸效应。此外,薄板对温度变化非常敏感。因此,可通过挠曲电效应和温度来调控压电纳米薄板的多场耦合特性和力学行为,进而优化基于压电薄板的NEMS/MEMS中传感器、作动器等电子器件的性能。  相似文献   

6.
宋铭  鄢之 《固体力学学报》2010,41(5):444-454
摘要:挠曲电效应是由应变梯度引起的,与尺度相关的力电耦合效应。基于Kirchhoff板假设和挠曲电理论,本文推导了温度和电压作用下的压电薄板力-电-热耦合微分控制方程,定量分析了微分控制方程中非线性项的影响,并针对四周固支压电薄板采用Ritz法求解,数值计算了压电薄板的弯曲和振动行为。在研究温度和挠曲电效应对薄板耦合特性和力学行为的影响时,本文分别考虑了材料系数不随温度变化和随温度线性变化两种情况。以PZT-5H为例,我们讨论了挠曲电和温度对压电薄板的横向位移和固有频率的影响。研究结果表明挠曲电效应对压电纳米薄板的力学行为影响很大,且具有明显的尺寸效应。此外,薄板对温度变化非常敏感。因此,可通过挠曲电效应和温度来调控压电纳米薄板的多场耦合特性和力学行为,进而优化基于压电薄板的NEMS/MEMS中传感器、作动器等电子器件的性能。  相似文献   

7.
基于线弹性断裂力学中I型裂纹的欧文解答,解析推导了在单向拉伸作用下无限大平板中I型裂纹尖端应变梯度场,建立了应变梯度与裂纹扩展之间的关联;基于挠曲电效应建立了电极化强度与应变梯度之间的力电耦合关系,提出了一种利用应变梯度传感器监测I型裂纹的方法,获知裂纹尖端坐标和裂纹扩展长度.本研究拟为应用应变梯度传感器对工程结构中裂纹扩展的实时监测提供初步的理论依据及方法.挠曲电感应技术在结构健康监测领域前景广阔.  相似文献   

8.
挠曲电效应是一种新兴的机电耦合效应,在微纳米尺度的传感器、致动器和俘能器方面有广阔的应用前景.本文基于挠曲电材料的变分原理和电吉布斯自由能,推导了表面覆盖电极的挠曲电悬臂梁在电学开路条件下的机电耦合动力学控制方程和相应的力电边界条件.进一步获得了求解电学开路条件下挠曲电悬臂梁自振频率的超越方程.以聚偏氟乙烯(PVDF)材料为算例,讨论了挠曲电系数、末端质量块和梁尺寸对结构自振频率和电学开路/短路条件下结构自振频率有效频移的影响.计算结果表明,挠曲电系数的增大会提高梁的自振频率;末端质量的增大可以降低梁的自振频率,并且末端质量块的转动效应对悬臂梁自振频率的影响很小;悬臂梁结构的有效频移随着结构尺寸减小而增加,并在某一厚度尺寸趋于饱和值.  相似文献   

9.
曹彩芹  陈晶博  李东波 《力学学报》2022,54(11):3088-3098
具有尺度依赖的挠曲电效应在器件的设计中扮演着越来越关键的角色, 研究人员在微纳米尺度多物理场分析中进行了大量工作. 基于考虑挠曲电和电场梯度效应的弹性介电材料非经典理论, 以二维纳米板为例, 通过理论建模, 分析纳米板在弯曲问题中的力?电耦合行为. 根据Mindlin假设给出板的位移场和电势场的一阶截断, 选取板的材料为立方晶体(m3m点群), 将广义三维本构方程代入到高阶应力、高阶偶应力、高阶电位移和高阶电四极矩的表达式中得到相应的二维本构方程, 利用弹性电介质变分原理得到板的控制方程和边界上的线积分等式, 分别将二维本构方程和边界上外法线的方向余弦代入, 得到板的高阶弯曲方程、高阶电势方程以及对应的四边简支边界条件. 利用四边简支矩形板的高阶弯曲方程、高阶电势方程和相应的边界条件, 根据Navier解理论, 求解纳米板的电势场, 重点分析电场梯度对板内一阶电势的影响. 数值计算结果表明: 电场梯度对纳米板中由挠曲电效应产生的一阶电势有削弱作用, 且材料参数g11越大, 一阶电势受到的削弱越大; 同时电场梯度的存在消除了纳米板在受横向集中载荷作用时一阶电势的奇异性. 本文是对具有挠曲电效应和电场梯度效应的纳米板结构分析理论的一个扩展, 为微纳米尺度器件的结构设计提供参考.   相似文献   

10.
结合非局部弹性应力/应变梯度耦合本构关系和流体非局部应力关系式,基于Euler梁理论,建立了充流微通道流固耦合波传导模型;根据耦合固体非局部应力/应变梯度弹性效应以及流体非局部效应,分别模拟了微通道和管腔内流体的尺度效应,推导得出了充流微通道在微纳米尺度的波动控制方程和边界条件。通过对控制方程的求解,分析了不同类型尺度效应对微通道的波动和振动特性的影响。结果显示,各类尺度效应对系统的动力学特性影响不同。微通道非局部弹性效应对波动产生阻尼,特别是对波长较短的波传导;而应变梯度弹性效应对波传导有促进作用,且该效应对波动的影响与波长无关;非局部效应和应变梯度效应对微通道刚度产生不同影响,非局部效应降低刚度,应变梯度效应增加刚度。  相似文献   

11.
The flexoelectric effect is very strong for nanosized dielectrics. Moreover, on the nanoscale, surface effects and the electrostatic force cannot be ignored. In this paper, an electric enthalpy variational principle for nanosized dielectrics is proposed concerning with the flexoelectric effect, the surface effects and the electrostatic force. Here, the surface effects contain the effects of both surface stress and surface polarization. From this variational principle, the governing equations and the generalized electromechanical Young-Laplace equations are derived and can account for the effects of flexoelectricity, surface and the electrostatic force. Moreover, based on this variational principle, both the generalized bulk and surface electrostatic stresses can be obtained and are composed of two parts: the Maxwell stress corresponding to the polarization and strain and the remainder relating to the polarization gradient and the strain gradient. The theory developed in this paper provides the underlying framework for the analyses and computational solutions of electromechanical problems in nanodielectrics.  相似文献   

12.
We have conducted a systematical investigation to reveal the stability and evolution path of various ferroelectric domain patterns in nanofilms subjected to mechanical loads and related flexoelectric field. Within a rigorous framework of flexoelectricity, a phase-field approach has been established for simulating the domain structure of ferroelectric nanofilms. The electromechanical fields of the nanofilms are numerically solved by a fast Fourier transform technique (FFT) based on the combination of Khachaturyan's microscopic elastic theory and Stroh's formalism of anisotropic elasticity. Using this approach, we simulate eight types of domain patterns that can be stabilized in the nanofilms. It is further demonstrated that these domain patterns can be significantly affected by the mechanical loads and related flexoelectric field and exhibit fruitful evolution paths. To adapt the applied mechanical strain and strain gradient, the domain pattern may remain stable, evolve into another polydomain pattern, or become a monodomain state (an effect of domain erasing). The domain fraction, detailed domain morphology, average stresses in the nanofilms, average polarization and temporal evolution characteristics of the domain patterns under various mechanical loads and sources of flexoelectric field have been analyzed. This investigation should provide instructive information for the practical application of ferroelectric nanofilms under complex and changeable mechanical conditions.  相似文献   

13.
Wave propagation in elastic dielectrics with flexoelectricity, micro-inertia and strain gradient elasticity is investigated in this paper. Dispersion phenomenon, which does not exist in classical elastic dielectric theory, is observed in the flexoelectric microstructured solids. Analytical solutions for the phase velocity \(C_{p}\), group velocity \(C_{g}\) and their ratio \(\gamma = C_{g} / C_{p}\) are calculated for the case of harmonic decomposition. The magnitudes of the phase velocity and group velocity changed with the increasing of the wave number, while they are constant in the classical elastic dielectric theory. It is shown that the flexoelectricity, micro-inertia and microstructural effects are significant to predict the real behavior of longitudinal wave propagating in flexoelectric microstructured solids. Microstructural effects are not sufficient for dealing with realistic dispersion curves in flexoelectric solids, the micro-inertia and flexoelectricity are needed to obtain a physically acceptable value of the phase and group velocities.  相似文献   

14.
This paper presents a nonlinear thickness-shear vibration model for onedimensional infinite piezoelectric plate with flexoelectricity and geometric nonlinearity. The constitutive equations with flexoelectricity and governing equations are derived from the Gibbs energy density function and variational principle. The displacement adopted here is assumed to be antisymmetric through the thickness due to the thickness-shear vibration mode. Only the shear strain gradient through the thickness is considered in the present model. With geometric nonlinearity, the governing equations are converted into differential equations as the function of time by the Galerkin method. The method of multiple scales is employed to obtain the solution to the nonlinear governing equation with first order approximation. Numerical results show that the nonlinear thickness-shear vibration of piezoelectric plate is size dependent, and the flexoelectric effect has significant influence on the nonlinear thickness-shear vibration frequencies of micro-size thin plates. The geometric nonlinearity also affects the thickness-shear vibration frequencies greatly. The results show that flexoelectricity and geometric nonlinearity cannot be ignored in design of accurate high-frequency piezoelectric devices.  相似文献   

15.
Recent works have established the critical role of flexoelectricity in a variety of size-dependent physical phenomena related to ferroelectrics including giant piezoelectricity at the nanoscale, dead-layer effect in nanocapacitors, dielectric properties of nanostructures among others. Flexoelectricity couples strain gradients to polarization in both ordinary and piezoelectric dielectrics. Relatively few experimental works exist that have determined flexoelectric properties and they all generally involve some sort of bending tests on micro-specimens. In this work, we present a straightforward method based on nanoindentation that allows the evaluation of flexoelectric properties in a facile manner. The key contribution is the development of an analytical model that, in conjunction with indentation load–displacement data, allows an estimate of the flexoelectric constants. In particular, we confirm the experimental results of other groups on BaTiO3 which differ by three orders of magnitude from atomistic predictions. Our analytical model predicts (duly confirmed by our experiments) a strong indentation size-effect due to flexoelectricity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号