首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Hierarchical defects are defined as adjacent defects at different length scales.Involved are the two scales where the stress field distribution is interrelated.Based on the complex variable method and conformal mapping,a multiscale framework for solving the problems of hierarchical defects is formulated.The separated representations of mapping function,the governing equations of potentials,and the stress field are subsequently obtained.The proposed multiscale framework can be used to solve a variety of simplified engineering problems.The case in point is the analytical solution of a macroscopic elliptic hole with a microscopic circular edge defect.The results indicate that the microscopic defect aggregates the stress concentration on the macroscopic defect and likely leads to global propagation and rupture.Multiple micro-defects have interactive effects on the distribution of the stress field.The level of stress concentration may be reduced by the coalescence of micro-defects.This work provides a unified method to analytically investigate the influence of edge micro-defects within the scope of multiscale hierarchy.The formulated multiscale approach can also be potentially applied to materials with hierarchical defects,such as additive manufacturing and bio-inspired materials.  相似文献   

2.
Micro-electro-mechanical system(MEMS)gyroscopes are an important sort of inertial sensor for identifying parameters of spinning structures,such as the spinning speed and angular deviation,based on the Coriolis effect.In this paper,the nonlinear mechanism of MEMS vibratory ring gyroscopes is analyzed by applying a fully coupled nonlinear model,in which the gyroscopic coupling and geometrically and structurally nonlinear couplings are all taken into account.The coupled differential equations governing the drive and sense motions are established via the Lagrangian equations.Numerical simulation is conducted,and the key nonlinear components and energy transfer behaviors between the drive and sense modes are elucidated.It is revealed that the cubic rigidity nonlinearity is another significant factor leading to the coupling between the drive and sense modes other than the gyroscopic coupling.Perturbation analysis is also carried out by using the method of multiple scales.The nonlinear frequency-amplitude responses of the drive and sense vibrations are obtained,and comprehensive parametric studies are performed.The significant effects of system damping,excitation amplitude,drive amplitude and spinning speed on the responses are discussed,which will facilitate to improve the nonlinear performance and sensitivity of the gyroscope.  相似文献   

3.
Lignocellulosic biomass material sourced from plants and herbaceous sources is considered as a prospective feedstock of inexpensive,potentially carbon-neutral energy.Lignocellulosic biomass is structurally built on cellulose,hemicellulose,and lignin,which are present in varying concentrations based on the feedstock type and play distinct and not well understood mechanical functions in the flow behavior.The frictional characteristics of lignocellulosic biomass particulates influence their flow behavior in biorefineries.Thus,it is important to fundamentally investigate the relative contribution of cellulose,hemicellulose,and lignin to the frictional behavior.However,these three biopolymers are interwoven into a complex matrix in the lignocellulosic biomass,thus making it hard to quantify the contribution of each biopolymer.In this study,we selectively remove hemicellulose from switchgrass and investigate the effects of its diminishing concentration on the coefficient of friction.We observed that the angle of repose and,therefore,the coefficient of friction for a loose assembly of the control and treated switchgrass samples decrease with decreasing hemicellulose content.This indicates the frictional resistance to flow for biomass particulate assemblies is at least proportional to the hemicellulose content.We also established that the observed changes in the frictional behavior were not due to particle morphological characteristics.  相似文献   

4.
Nanoparticle-mediated drug delivery is recognized as a promising option for targeted treatment of atherosclerosis. In this paper, the Eulerian-Lagrangian technique is adopted to simulate the delivery of drug-loaded nanoparticles to patient-specific atherosclerotic plaque with the aid of an external magnetic field. Plaques and vascular walls are introduced as porous media formulated by the Darcy-Forchheimer model in this targeted transport process. The results demonstrate that the delivery efficiency of particles to atherosclerosis depends on the external magnetic field, such as configuration and intensity, in which the configuration angle of the current wire is a key factor and the double current wires have advantages over the single current wire. Meanwhile, the delivery efficiency gradually decreases as the distance between the plaque cap and the current wire increases. Further, although augmenting the current or magnetic susceptibility can generally improve the delivery efficiency of nanoparticles, this increase is not apparent when small-sized nanoparticles are employed as drug transport particles. The results obtained can potentially serve as the guideline to optimize regimens for the targeted therapy of atherosclerosis.  相似文献   

5.
Energy conversion in micro/nano-systems is a subject of current research,among which the electrokinetic energy conversion has attracted extensive attention. However, there exist two different definitions on the electrokinetic energy conversion efficiency in literature. A few researchers defined the efficiency using the pure pressure-driven flow rate, while other groups defined the efficiency based on the flow rate with the inclusion of the effect of the streaming potential field. In this work, b...  相似文献   

6.
The size-dependent geometrically nonlinear harmonically soft excited oscillation of composite truncated conical microshells(CTCMs)made of functionally graded materials(FGMs)integrated with magnetostrictive layers is analyzed.It is supposed that the FGM CTCMs are subjected to mechanical soft excitations together with external magnetic fields.An analytical framework is created by a microstructuredependent shell model having the 3rd-order distribution of shear deformation based on the modified couple stress(MCS)continuum elasticity.With the aid of the discretized form of differential operators developed via the generalized differential quadrature technique,a numerical solution methodology is introduced for obtaining the couple stress-based amplitude and frequency responses related to the primary resonant dynamics of the FGM CTCMs.Jump phenomena due to the loss of the first stability branch and falling down to the lower stable branch can be seen in the nonlinear primary resonance of the FGM CTCMs.It is demonstrated that the hardening type of nonlinearity results in bending the frequency response to the right side,and the MCS type of size effect weakens this pattern.Moreover,for higher material gradient indexes,the hardening type of nonlinearity is enhanced,and the MCS-based frequency response bends more considerably to the right side.  相似文献   

7.
We report the results of accurate prediction of lift(C L)and drag(C D)coefficients of two typical airfoil flows(NACA0012 and RAE2822)by a new algebraic turbulence model,in which the eddy viscosity is specified by a stress length(SL)function predicted by structural ensemble dynamics(SED)theory.Unprecedented accuracy of the prediction of C D with error of a few counts(one count is 10−4)and of C L with error under 1%-2%are uniformly obtained for varying angles of attack(AoA),indicating an order of magnitude improvement of drag prediction accuracy compared to currently used models(typically around 20 to 30 counts).More interestingly,the SED-SL model is distinguished with fewer parameters of clear physical meaning,which quantify underlying turbulent boundary layer(TBL)with a universal multi-layer structure,and is thus promising to be more easily generalizable to complex TBL.The use of the new model for the calibration of flow condition in experiment and the extraction of flow physics from numerical simulation data of aeronautic flows are discussed.  相似文献   

8.
The axial flow structure in a high-density CFB riser having a height of 18 m is investigated on the basis of pressure measurements.Solids circulation rates reach 1400 kg/(m2 s)at superficial gas velocities of 5-9 m/s and the apparent solids holdup exceeds 0.2,indicating high-density operations have been achieved.The apparent solids holdup increases with the solids circulation rate increasing and/or superficial gas velocity decreasing.Axial distributions of the apparent solids holdup have exponential shapes with denser regions at the bottom and more dilute regions in the upper part.The apparent slip velocity increases with the increasing solids holdup and reaches 14 m/s,showing that there are more opportunities of cluster formation in high-density operation.Furthermore,the apparent slip velocity has a power relation with the apparent solids holdup under a wide range of operating conditions.  相似文献   

9.
Widely distributed in natural deposits,the overconsolidated(OC)clays have attracted extensive experimental investigations on their mechanical behaviors,especially in the 1960s and 1970s.Based on these results,numerous constitutive models have also been established.These models generally fall into two categories:one based on the classical plasticity theory and the other the bounding surface(BS)plasticity theory,with the latter being more popular and successful.The BS concept and the subloading surface(SS)concept are the two major BS plasticity theories.The features of these two concepts and the representative models based on them are introduced,respectively.The unified hardening(UH)model for OC clays is also based on the BS plasticity theory but distinguishes itself from other models by the integration of the reference yield surface,unified hardening parameter,potential failure stress ratio,arid transformed stress tensor.Modification is made to the Hvorslev envelop employed in the UH model to improve its capability of describing the behaviors of clays with extremely high overconsolidation ratio in this paper.The comparison among the BS model,SS model,and UH model is performed.Evidence shows that all these three models can characterize the fundamental behaviors of OC clays,such as the stress dilatancy,strain softening and attainment of the critical state.The UH model with the revised Hvorslev envelop has the fewest parameters which are identical to those of the modified Cam-Clay model.  相似文献   

10.
A systematic numerical integration method is applied to the absolute nodal coordinate formulation(ANCF)fully parameterized beam element with smooth varying and continuous cross section.Moreover,the formulation for the integration points and weight coefficients are given in the method which is used to model the multilayer beam with a circular cross section.To negate the effect of the bending stiffness for the element used to model the high-voltage electrical wire,the general continuum mechanical approach is adjusted.Additionally,the insulation cover for some particular types of the wire is described by the nearly incompressible Mooney-Rivlin material model.Finally,a static problem is presented to prove the accuracy and convergence properties of the element,and a dynamic problem of a flexible pendulum is simulated whereby the balance of the energy can be ensured.An experiment is carried out in which a wire is released as a pendulum and falls on a steel rod.The configurations of the wire are captured by a high-speed camera and compared with the simulation results.The feasibility of the wire model can therefore be demonstrated.  相似文献   

11.
In this paper, we derive the KdV equation from the two-lane lattice hydrodynamic traffic model considering density difference effect. The soliton solution is obtained from the KdV equation. Under periodical boundary, the KdV soliton of traffic flow is demonstrated by numerical simulation. The numerical simulation result is consistent with the nonlinear analytical result. Under open system, the density fluctuation of the downstream last one lattice is designed to explore the empirical congested traffic states. A phase diagram is presented which includes free traffic, moving localized cluster, triggered stop-and-go traffic, oscillating congested traffic, and homogeneous congested traffic. Finally, the spatiotemporal evolution of all the traffic states described in phase diagram are reproduced. Results suggest that the two-lane density difference hydrodynamic traffic model is suitable to describe the actual traffic.  相似文献   

12.
This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution.  相似文献   

13.
发展了基于无网格方法的激波诱导燃烧流场数值模拟算法. 该算法采用二维多组分Euler方程,在点云离散的基础上采用曲面逼近计算空间导数,引入多组分HLLC (Harten-Lax-van Leer-contact) 格式计算无黏通量,运用四阶Runge-Kutta 法进行时间显式推进,化学动力学采用有限速率反应模型. 对不同预混气体中的激波诱导燃烧流场进行了数值模拟,结果同相关文献吻合较好,验证了算法的正确性.  相似文献   

14.
A numerical method to solve the Reynolds‐averaged Navier–Stokes equations with the presence of discontinuities is outlined and discussed. The pressure is decomposed into the sum of a hydrostatic component and a hydrodynamic component. The numerical technique is based upon the classical staggered grids and semi‐implicit finite difference methods applied for quasi‐ and non‐hydrostatic flows. The advection terms in the momentum equations are approximated in order to conserve mass and momentum following the principles recently developed for the numerical simulation of shallow water flows with large gradients. Conservation of these properties is the most important aspect to represent near local discontinuities in the solution, following from sharp bottom gradients or hydraulic jumps. The model is applied to reproduce the flow over a step where a hydraulic jump forms downstream. The hydrostatic pressure assumption fails to represent this type of flow mainly because of the pressure deviation from the hydrostatic values downstream the step. Fairly accurate results are obtained from the numerical model compared with experimental data. Deviation from the data is found to be inherent to the standard k–ε model implemented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
M. C. Shen  S. M. Sun 《Wave Motion》1987,9(6):563-574
A nonlinear ray method is used to study surface waves on a ferromagnetic fluid of variable depth subject to a horizontal magnetic field, and an equation of the KdV type with variable coefficients is derived. An approximate solution of the equation representing a three-dimensional soliton with varying amplitude and phase is constructed and numerical results are presented.  相似文献   

16.
Nonlinear Dynamics - A variety of negative-order integrable modified KdV (mKdV) equations of higher orders is constructed. The inverse profile of the recursion operator of the modified KdV equation...  相似文献   

17.
Understanding the physics of microscale two-phase flow is important for a broad variety of engineering applications including compact PEM fuel cells and heat exchangers. The low Bond number and confined geometry make it critical to consider both the surface tension at the liquid–gas interfaces and the surface forces acting at the channel boundaries. Within the framework of a numerical volume of fluid (VOF) approach, the present work proposes a model to account for surface adhesion forces by considering the effects of contact angle hysteresis. A transient model is developed by correcting boundary force balances through specification of the local contact angle and instantaneously updating the local angle values based on the variation of the volume fraction from previous time steps. The model compares very well with new data provided here for droplets on a rotating disk and liquid slug flow in microchannel. The simulation reveals that the contact angle distribution along the slug profile in the microchannel flow can be approximated using a piecewise linear function. This study indicates that the asymmetric distribution of the contact angle might be responsible for several phenomena observed in the microchannel experiments, including slug instability.  相似文献   

18.
A generalized finite spectral method is proposed. The method is of high-order accuracy. To attain high accuracy in time discretization, the fourth-order Adams-Bashforth-Moulton predictor and corrector scheme was used. To avoid numerical oscillations caused by the dispersion term in the KdV equation, two numerical techniques were introduced to improve the numerical stability. The Legendre, Chebyshev and Her-mite polynomials were used as the basis functions. The proposed numerical scheme is validated by applications to the Burgers equation (nonlinear convection- diffusion problem) and KdV equation (single solitary and 2-solitary wave problems), where analytical solutions are available for comparison. Numerical results agree very well with the corresponding analytical solutions in all cases.  相似文献   

19.
The presented procedure enables calculation of a velocity profile for the Wagner fluid in the Poiseuille flow. The velocity profile can be approximated with a prescribed accuracy, thus enabling boundary conditions for the Wagner model, that are required for numerical simulations to be defined. Convergence analysis for the procedure indicates the existence of a critical Deborah number, which limits the validity of the approximation.  相似文献   

20.
The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathematical model of the problem is built,in which the Gaussian distribution is used to describe the inhomogeneous intrinsic permeability.Based on the Boltzmann transformation,an efficient semi-analytical method is proposed.The problem is then converted into a nonlinear equation in an integral form for the pressure field,and a related explicit iteration scheme is constructed by numerical discretization.The validation examples show that the proposed method has good convergence,and the simulation results also agree well with the results obtained from both numerical and actual data of two vertical fractured test wells in the literature.Desorption,slippage,and diffusion have significant influence on shale gas flows.The accuracy of the usual technique that the product of viscosity and compressibility is approximated as its value at the average formation pressure is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号