首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effect of particle shape modification on the segregation reduction of enzyme granules in laundry detergent powder mixtures was investigated,both experimentally and computationally using Deseret Element Method(DEM).The shape of modified enzyme particles was in such a way that the large and dense enzyme particles were layered by other fine particles in the detergent powder,by means of a process known in the literature as“seeded granulation”.It is found that the homogeneity of modified enzyme particles could be improved significantly comparing to the original spherical enzyme particles in powder mixtures.Overall,the results of this research demonstrated that the segregation-induced properties of the dense/spherical enzyme particles could be lowered by altering their shape,which could enable the enzyme particles to behave almost similar to other ingredients during the pile formation process.  相似文献   

2.
The main aims of this study are to investigate the hydrodynamic performance of an autonomous underwater vehicle(AUV),calculate its hydrodynamic coefficients,and consider the flow characteristics of underwater bodies.In addition,three important parts of the SUBOFF bare hull,namely the main body,nose,and tail,are modified and redesigned to improve its hydrodynamic performance.A three-dimensional(3D)simulation is carried out using the computational fluid dynamics(CFD)method.To simulate turbulence,the k-ωshear stress transport(SST)model is employed,due to its good prediction capability at reasonable computational cost.Considering the effects of the length-to-diameter ratio(LTDR)and the nose and tail shapes on the hydrodynamic coefficients,it is concluded that a hull shape with bullet nose and sharp tail with LTDR equal to 7.14 performs better than the SUBOFF model.The final proposed model shows lower drag by about 14.9%at u=1.5 m·s^-1.Moreover,it produces 8 times more lift than the SUBOFF model at u=6.1 m·s^-1.These effects are due to the attachment of the fluid flow at the tail area of the hull,which weakens the wake region.  相似文献   

3.
The mathematical model of a semiconductor device is governed by a system of quasi-linear partial differential equations.The electric potential equation is approximated by a mixed finite element method,and the concentration equations are approximated by a standard Galerkin method.We estimate the error of the numerical solutions in the sense of the Lqnorm.To linearize the full discrete scheme of the problem,we present an efficient two-grid method based on the idea of Newton iteration.The main procedures are to solve the small scaled nonlinear equations on the coarse grid and then deal with the linear equations on the fine grid.Error estimation for the two-grid solutions is analyzed in detail.It is shown that this method still achieves asymptotically optimal approximations as long as a mesh size satisfies H=O(h^1/2).Numerical experiments are given to illustrate the efficiency of the two-grid method.  相似文献   

4.
In this study,the optical flow method is used to measure the velocity distribution of a granular flow in a rectangular quasi-two-dimensional silo.Using the velocity gradient,a free-fall arch(FFA)is obtained and its geometric characteristics are calculated.A parabola-shaped FFA structure is discovered above the orifice in the steady flow state.The shape of the FFA affects the flow rate through the orifice.Furthermore,as jamming begins to occur,the geometry of the FFA disappears gradually from both sides and then from the middle;finally,the FFA disappears completely in the state of jamming.As the boundary between finite-stress and stress-free regions,the FFA facilitates further studies regarding the discontinuity of the stress area above the orifice.  相似文献   

5.
The existing drag models are mostly based on the assumption of homogenous fluidization.However,the use of a homogeneous drag model to predict a heterogeneous granular flow system will cause a deviation.In this study,we developed a drag force model based on the assumption of heterogeneous fluidization.To prevent weakening of the heterogeneous characteristics in the drag force formula,we propose a finite average statistical method to filter the information of the heterogeneous granular cluster.The filtered information was used to fit the modified drag formula,which can reflect the heterogeneity of the granular cluster considering different configurations.A comparison shows that the new proposed drag formula filtered by the finite average statistical method fits well with energy minimization multi-scale simulation results.  相似文献   

6.
The turbulent combustion flow modeling is performed to study the effects of CO_2 addition to the fuel and oxidizer streams on the thermochemical characteristics of a swirl stabilized diffusion flame. A flamelet approach along with three well-known turbulence models is utilized to model the turbulent combustion flow field. The k-ω shear stress transport(SST) model shows the best agreement with the experimental measurements compared with other models. Therefore, the k-ω SST model is used to study the effects of CO_2 dilution on the flame structure and strength, temperature distribution, and CO concentration. To determine the chemical effects of CO_2 dilution, a fictitious species is replaced with the regular CO_2 in both the fuel stream and the oxidizer stream. The results indicate that the flame temperature decreases when CO_2 is added to either the fuel or the oxidizer stream. The flame length reduction is observed at all levels of CO_2 dilution. The H radical concentration indicating the flame strength decreases, following by the thermochemical effects of CO_2 dilution processes. In comparison with the fictitious species dilution, the chemical effects of CO_2 addition enhance the CO mass fraction. The numerical simulations show that when the dilution level is higher, the rate of the flame length reduction is more significant at low swirl numbers.  相似文献   

7.
In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.  相似文献   

8.
A new theory developed from extended high-order sandwich panel theory(EHSAPT)is set up to assess the static response of sandwich panels by considering the geometrical and material nonlinearities simultaneously.The geometrical nonlinearity is considered by adopting the Green-Lagrange-type strain for the face sheets and core.The material nonlinearity is included as a piecewise function matched to the experimental stress-strain curve using a polynomial fitting technique.A Ritz technique is applied to solve the governing equations.The results show that the stress stiffening feature is well captured in the geometric nonlinear analysis.The effect of the geometric nonlinearity in the face sheets on the displacement response is more significant when the stiffness ratio of the face sheets to the core is large.The geometric nonlinearity decreases the shear stress and increases the normal stress in the sandwich core.By comparison with open literature and finite element simulations,the present nonlinear EHSAPT is shown to be sufficiently precise for estimating the nonlinear static response of sandwich beams by considering the geometric and material nonlinearities simultaneously.  相似文献   

9.
第七届全国周培源大学生力学竞赛试题   总被引:2,自引:2,他引:0  
一、小球在高脚玻璃杯中的运动(20分) 一半球形高脚玻璃杯,半径r=5cm,其质量m1=0.3kg,杯底座半径R=5cm,厚度不计,杯脚高度h=10cm.如果有一个质量m2=0.1kg的光滑小球自杯子的边缘由静止释放后沿杯的内侧滑下,小球的半径忽略不计.  相似文献   

10.
利用非线性有限元软件ABAQUS分析了点阵材料夹芯悬臂梁在端部受刚性质量块撞击时的弹塑性动力响应,考察了刚性块质量和冲击速度变化时对梁端部最大位移的影响.对给定的刚性块质量和速度,考察了芯层的拓扑构型变化时对最大位移的影响,并对刚塑性理论解与有限元计算进行了比较,结果表明:当动载赋予结构的总输出能量与结构的最大弹性能容量之比较大时,两者给出的悬臂梁端部达到最大位移的时间及位移峰值比较接近.  相似文献   

11.
Summary  The thermal instability of a Rivlin–Ericksen fluid in a porous medium is considered in the presence of a uniform vertical magnetic field to include the effect of Hall currents. For the case of stationary convection, the magnetic field has a stabilizing effect on the system, whereas the Hall current has a destabilizing effect on the system. The medium permeability has both stabilizing and destabilizing effects, depending on the Hall parameter M. The kinematic viscoelasticity has no effect on stationary convection. Graphs have been plotted by giving numerical values to the parameters, to depict the stability characteristics. The magnetic field (and corresponding Hall currents) introduces oscillatory modes in the system, which would be nonexistent in their absence. The sufficient conditions for the nonexistence of overstability are also obtained. Received 20 May 1999; accepted for publication 8 March 2000  相似文献   

12.
The effect of magnetic field dependent viscosity on thermosolutal convection in a ferromagnetic fluid saturating a porous medium is considered for a fluid layer heated and soluted from below in the presence of uniform magnetic field. Using linearized stability theory and normal mode analysis, an exact solution is obtained for the case of two free boundaries. For case of stationary convection, medium permeability has a destabilizing effect, whereas a stable solute gradient and magnetic field dependent viscosity have a stabilizing effect on the system. In the absence of magnetic field dependent viscosity, the destabilizing effect of non-buoyancy magnetization is depicted but in the presence of magnetic field dependent viscosity non-buoyancy magnetization may have a destabilizing or stabilizing effect on the onset of instability. The critical wave number and the critical magnetic thermal Rayleigh number for the onset of instability are also determined numerically for sufficiently large values of buoyancy magnetization parameter M1 and the results are depicted graphically. The principle of exchange of stabilities is found to hold true for the ferromagnetic fluid saturating a porous medium heated from below in the absence of stable solute gradient. The oscillatory modes are introduced due to the presence of the stable solute gradient, which were non-existent in its absence. A sufficient condition for the non-existence of overstability is also obtained. The paper also reaffirms the qualitative findings of earlier investigations which are, in fact, limiting cases of the present study.  相似文献   

13.
The instability of the plane interface between two oldroydian viscoelastic superposed fluids in the presence of uniform rotation and variable magnetic field in porous medium is considered. For potentially stable configuration, the system is found to be stable for disturbances of all wave numbers. The magnetic field succeeds in stabilizing certain wave-number range, which were unstable in the absence of magnetic field and rotation for the potentially unstable configuration. Sub cases of magnetic free and rotation free configurations are also considered, separately.  相似文献   

14.
The triple-diffusive convection in a micropolar ferromagnetic fluid layer heated and soluted from below is considered in the presence of a transverse uniform magnetic field. An exact solution is obtained for a flat fluid layer contained between two free boundaries. A linear stability analysis and a normal mode analysis method are carried out to study the onset convection. For stationary convection, various parameters such as the medium permeability, the solute gradients, the non-buoyancy magnetization, and the micropolar parameters (i.e., the coupling parameter, the spin diffusion parameter, and the micropolar heat conduction parameter) are analyzed. The critical magnetic thermal Rayleigh number for the onset of instability is determined numerically for a sufficiently large value of the buoyancy magnetization parameter M 1. The principle of exchange of stabilities is found to be true for the micropolar fluid heated from below in the absence of the micropolar viscous effect, the microinertia, and the solute gradients. The micropolar viscous effect, the microinertia, and the solute gradient introduce oscillatory modes, which are non-existent in their absence. Sufficient conditions for the non-existence of overstability are also obtained.  相似文献   

15.
The double diffusive convection in a horizontal couple stress fluid saturated anisotropic porous layer, which is heated and salted from below, is studied analytically. The modified Darcy equation that includes the time derivative term is used to model the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes, and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameter, solute Rayleigh number, Lewis number, couple stress parameter, and Vadasz number on the stationary, oscillatory, and finite amplitude convection is shown graphically. It is found that the thermal anisotropy parameter, couple stress parameter, and solute Rayleigh number have stabilizing effect on the stationary, oscillatory, and finite amplitude convection. The mechanical anisotropy parameter has destabilizing effect on stationary, oscillatory, and finite amplitude convection. The Lewis number has stabilizing effect in the case of stationary and finite amplitude modes, with dual effect in the case of oscillatory convection. Vadasz number advances the onset of oscillatory convection. The heat and mass transfer decrease with an increase in the values of couple stress parameter, while both increase with an increase in the value of solute Rayleigh number and mechanical anisotropy parameter. The thermal anisotropy parameter and Lewis number have contrasting effect on the heat mass transfer.  相似文献   

16.
The effect of a uniform electromagnetic field on the stability of a thin layer of an electrically conducting viscoelastic liquid flowing down on a nonconducting inclined plane is studied under the induction-free approximation. Long-wave expansion method is used to obtain the surface evolution equation. The stabilizing role of the magnetic parameter M and the destabilizing role of the viscoelastic parameter Γ as well as the electric parameter E on this flow field are established. A novel result which emerges from our analysis is that the stabilizing effect of M holds no longer true for both viscous and viscoelastic fluids in the presence of electromagnetic field. It is found that when E exceeds a certain critical value depending on Γ, magnetic field exhibits the destabilizing effect on this flow field. Indeed, this critical value decreases with the increase of the viscoelastic parameter Γ since it has a destabilizing effect inherently. Another noteworthy result which arises from the weakly nonlinear stability analysis is that both the subcritical unstable and supercritical stable zones are possible together with the unconditional stable and explosive zones for different values of Γ depending on the wave number k.  相似文献   

17.
S. Das  B. C. Sarkar  R. N. Jana 《Meccanica》2013,48(6):1387-1398
Effects of Hall current on MHD free convection boundary layer flow of a viscous incompressible electrically conducting fluid past a heated vertical flat plate of finite dimension in the presence of a uniform transverse magnetic field have been studied. An exact solution of the governing equations describing the flow has been obtained. The velocity field, induced magnetic field and bulk temperature distributions in the boundary layer flow have been discussed. It is found that the velocity components increase with an increase in Hall parameter. It is noticed that the induced magnetic field components are radically influenced by the Hall parameter. It is also found that the magnitude of bulk temperature in the x-direction decreases with an increase in either Hall parameter or magnetic parameter. On the other hand, the magnitude of the bulk temperature in the z-direction increases with an increase in Hall parameter whereas it decreases with an increase in magnetic parameter.  相似文献   

18.
This present study considers the problem of steady magneto-convection in a horizontal mushy layer with variable permeability and an impermeable mush–liquid interface during directional solidification of binary alloys. We model the flow by introducing a uniform magnetic field in the mushy layer which is considered as a porous medium where Darcy’s law holds and the permeability is a function of the local solid volume fraction. Basic-state solutions are obtained analytically using the no-flow condition. With the help of multiple shooting techniques, we obtain numerical solutions to the linear perturbation system for non-magnetic and magnetic cases. Numerical results are presented showing the effects of the magnetic field and the permeability of the layer. These results demonstrate that the application of an external magnetic field has stabilizing effects on the convection and can reduce the tendency for chimney formation in the mushy layer. In addition, variable permeability, which corresponds to an active mushy layer, indicates more stable and realizable flow system as compared to the case of constant permeability.  相似文献   

19.
The effect of Coriolis force on the onset of ferromagnetic convection in a rotating horizontal ferrofluid saturated porous layer in the presence of a uniform vertical magnetic field is studied. The boundaries are considered to be either stress free or rigid. The modified Brinkman–Forchheimer-extended Darcy equation with fluid viscosity different from effective viscosity is used to characterize the fluid motion. The condition for the occurrence of direct and Hopf bifurcations is obtained analytically in the case of free boundaries, while for rigid boundaries the eigenvalue problem has been solved numerically using the Galerkin method. Contrary to their stabilizing effect in the absence of rotation, increasing the ratio of viscosities, Λ, and decreasing the Darcy number Da show a partial destabilizing effect on the onset of stationary ferromagnetic convection in the presence of rotation, and some important observations are made on the stability characteristics of the system. Moreover, the similarities and differences between free–free and rigid–rigid boundaries in the presence of buoyancy and magnetic forces together or in isolation are emphasized in triggering the onset of ferromagnetic convection in a rotating ferrofluid saturated porous layer. For smaller Taylor number domain, the stress-free boundaries are found to be always more unstable than in the case of rigid boundaries. However, this trend is reversed at higher Taylor number domain because the stability of the stress-free case is increased more quickly than the rigid case.  相似文献   

20.
The combined effects of vertical heterogeneity of permeability and local thermal non-equilibrium (LTNE) on the onset of ferromagnetic convection in a ferrofluid saturated Darcy porous medium in the presence of a uniform vertical magnetic field are investigated. A two-field model for temperature representing the solid and fluid phases separately is used. The eigenvalue problem is solved numerically using the Galerkin method for different forms of permeability heterogeneity function Γ(z) and their effect on the stability characteristics of the system has been analyzed in detail. It is observed that the general quadratic variation of Γ(z) with depth has more destabilizing effect on the system when compared to the homogeneous porous medium case. Besides, the influence of LTNE and magnetic parameters on the criterion for the onset of ferromagnetic convection is also assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号