首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exact solutions are obtained for the following three problems in which the Brinkman filtration equations are used: laminar fluid flow between parallel plane walls, one of which is rigid while the other is a plane layer of saturated porous medium, motion of a plane porous layer between parallel layers of viscous fluid, and laminar fluid flow in a cylindrical channel bounded by an annular porous layer.  相似文献   

2.
In this study, fully developed heat and fluid flow in a parallel plate channel partially filled with porous layer is analyzed both analytically and numerically. The porous layer is located at the center of the channel and uniform heat flux is applied at the walls. The heat and fluid flow equations for clear fluid and porous regions are separately solved. Continues shear stress and heat flux conditions at the interface are used to determine the interface velocity and temperature. The velocity and temperature profiles in the channel for different values of Darcy number, thermal conductivity ratio, and porous layer thickness are plotted and discussed. The values of Nusselt number and friction factor of a fully clear fluid channel (Nu cl = 4.12 and fRe cl = 24) are used to define heat transfer increment ratio (eth = Nup/Nucl)({\varepsilon _{\rm th} =Nu_{\rm p}/Nu_{\rm cl})} and pressure drop increment ratio (ep = fRep/fRecl )({\varepsilon_{\rm p} =fRe_{\rm p}/fRe_{\rm cl} )} and observe the effects of an inserted porous layer on the increase of heat transfer and pressure drop. The heat transfer and pressure drop increment ratios are used to define an overall performance (e = eth/ep)({\varepsilon = \varepsilon_{\rm th}/\varepsilon_{\rm p})} to evaluate overall benefits of an inserted porous layer in a parallel plate channel. The obtained results showed that for a partially porous filled channel, the value of e{\varepsilon} is highly influenced from Darcy number, but it is not affected from thermal conductivity ratio (k r) when k r > 2. For a fully porous material filled channel, the value of e{\varepsilon} is considerably affected from thermal conductivity ratio as the porous medium is in contact with the channel walls.  相似文献   

3.
The stability of a conducting fluid saturating a porous medium, in the presence of a uniform magnetic field, is investigated using the Brinkman model. In the first part of the paper constant-flux thermal boundary conditions are considered for which the onset of convection is known to correspond to a vanishingly small wave number. The external magnetic field is assumed to be aligned with gravity. Closed form solutions are obtained, based on a parallel flow assumption, for a porous layer with either rigid-rigid, rigid-free or free-free boundaries. In the second part of the paper, the linear stability of a porous layer, heated isothermally from below, is investigated using the normal mode technique. The external magnetic field is applied either vertically or horizontally. Solutions are obtained for the case of a porous layer with free boundaries. Results for a pure viscous fluid and a Darcy (densely packed) porous medium emerge from the present analysis as limiting cases.  相似文献   

4.
The problem investigated relates the plane unsteady flow of a viscous incompressible fluid in a narrow channel one of whose walls is free and acted upon by a given load, while the other is rigidly fixed. The fluid enters the channel through a porous insert in the stationary wall. A model of the flow of a thin film of viscous incompressible fluid and Darcy's law for flow in a porous medium are used to find the distribution of fluid pressure and velocity in the channel and the porous insert in the two-dimensional formulation for fairly general boundary conditions in the case where the length of the porous insert exceeds the length of the free wall. In the particular case where the length of the porous insert is equal to the length of the free wall an exact stationary solution of the problem is obtained for a given value of the channel height. The stability of the equilibrium position of the free wall supported on a hydrodynamic fluid film is examined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 16–24, January–February, 1986.  相似文献   

5.
A theoretical study is performed on heat and fluid flow in partially porous medium filled parallel plate channel. A uniform symmetrical heat flux is imposed onto the boundaries of the channel partially filled with porous medium. The dimensional forms of the governing equations are solved numerically for different permeability and effective thermal conductivity ratios. Then, the governing equations are made dimensionless and solved analytically. The results of two approaches are compared and an excellent agreement is observed, indicating correctness of the both solutions. An overall Nusselt number is defined based on overall thermal conductivity and difference between the average temperature of walls and mean temperature to compare heat transfer in different channels with different porous layer thickness, Darcy number, and thermal conductivity ratio. Moreover, individual Nusselt numbers for upper and lower walls are also defined and obtained. The obtained results show that the maximum overall Nusselt number is achieved for thermal conductivity ratio of 1. At specific values of Darcy number and thermal conductivity ratio, individual Nusselt numbers approach to infinity since the value of wall temperatures approaches to mean temperature.  相似文献   

6.
In this paper, the problem of fully developed forced convection in a parallel-plate channel partly filled with a homogeneous porous material is considered. The porous material is attached to the walls of the channel, while the center of the channel is occupied by clear fluid. The flow in the porous material is described by a nonlinear Brinkman–Forchheimer-extended Darcy equation. Utilizing the boundary-layer approach, analytical solutions for the flow velocity, the temperature distribution, as well as for the Nusselt number are obtained. Dependence of the Nusselt number on several parameters of the problem is extensively investigated.  相似文献   

7.
The lattice Boltzmann method is carried out to investigate the heat transfer enhancement in a U-turn duct which is partially filled with a porous media. The porous layer is inserted at the core of the duct and is modeled using the Brinkman–Forchheimer assumptions. In order to validate the results, first a channel flow problem without any porous layer is compared with available data. Second, the porous Couette flow and partially porous channel flow are successfully compared with the studies of other researchers. Then, fluid flow in a clear U-turn duct is studied looking carefully at the velocity, curvature and rotation effects. Finally, the effects of porous layer thickness on the rate of heat transfer and pressure drop are investigated. Parametric studies are conducted to evaluate the effects of various parameters (i.e., Reynolds number, Darcy number, rotation number), highlighting their influences on the thermo-hydrodynamics behavior of the flow. The optimum values of porous layer thickness are presented for specific flow parameters.  相似文献   

8.
Stability of laminar flow in a curved channel formed by two concentric cylindrical surfaces is investigated. The channel is occupied by a fluid saturated porous medium; the flow in the channel is driven by a constant azimuthal pressure gradient. The momentum equation takes into account two drag terms: the Darcy term that describes friction between the fluid and the porous matrix, and the Brinkman term, which allows imposing the no-slip boundary condition at the channel walls. An analytical solution for the basic flow velocity is obtained. Numerical analysis is carried out using the collocation method to investigate the onset of instability leading to the development of a secondary motion in the form of toroidal vortices. The dependence of the critical Dean number on porosity and the channel width is analyzed.  相似文献   

9.
This paper concentrates on the analysis of the thermal nonequilibrium effects during forced convection in a parallel-plate channel filled with a fluid saturated porous medium. The flow in a channel is described by the Brinkman-Forchheimer-extended Darcy equation and the thermal nonequilibrium effects are accounted for by utilizing the two energy equations model. Applying the perturbation technique, an analytical solution of the problem is obtained. It is established that the temperature difference between the fluid and solid phases for the steady fully developed flow is proportional to the ratio of the flow velocity to the mean velocity. This results in a local thermal equilibrium at the walls of the channel if the Brinkman term which allows for the no-slip boundary condition at the walls is included into the momentum equation.  相似文献   

10.
Analytical solutions are obtained for two problems of transverse internal waves in a viscous fluid contacting with a flat layer of a fixed porous medium. In the first problem, the waves are considered which are caused by the motion of an infinite flat plate located on the fluid surface and performing harmonic oscillations in its plane. In the second problem, the waves are caused by periodic shear stresses applied to the free surface of the fluid. To describe the fluid motion in the porous medium, the unsteady Brinkman equation is used, and the motion of the fluid outside the porous medium is described by the Navier–Stokes equation. Examples of numerical calculations of the fluid velocity and filtration velocity profiles are presented. The existence of fluid layers with counter-directed velocities is revealed.  相似文献   

11.
In the present paper, multiphase flow dynamics in a porous medium are analyzed by employing the lattice-Boltzmann modeling approach. A two-dimensional formulation of a lattice-Boltzmann model, using a D2Q9 scheme, is used. Results of the FlowLab code simulation for single phase flow in porous media and for two-phase flow in a channel are compared with analytical solutions. Excellent agreement is obtained. Additionally, fluid-fluid interaction and fluid-solid interaction (wettability) are modeled and examined. Calculations are performed to simulate two-fluid dynamics in porous media, in a wide range of physical parameters of porous media and flowing fluids. It is shown that the model is capable of determining the minimum body force needed for the nonwetting fluid to percolate through the porous medium. Dependence of the force on the pore size, and geometry, as well as on the saturation of the nonwetting fluid is predicted by the model. In these simulations, the results obtained for the relative permeability coefficients indicate the validity of the reciprocity for the two coupling terms in the modified Darcy's law equations. Implication of the simulation results on two-fluid flow hydrodynamics in a decay-heated particle debris bed is discussed. Received on 1 December 1999  相似文献   

12.
13.
In this paper, the temporal development of small disturbances in a pressure‐driven fluid flow through a channel filled with a saturated porous medium is investigated. The Brinkman flow model is employed in order to obtain the basic flow velocity distribution. Under normal mode assumption, the linearized governing equations for disturbances yield a fourth‐order eigenvalue problem, which reduces to the well‐known Orr–Sommerfeld equation in some limiting cases solved numerically by a spectral collocation technique with expansions in Chebyshev polynomials. The critical Reynolds number Rec, the critical wave number αc, and the critical wave speed cc are obtained for a wide range of the porous medium shape factor parameter S. It is found that a decrease in porous medium permeability has a stabilizing effect on the fluid flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Various approaches to study the fluid flow in a fractured porous medium are discussed. Three approaches are compared by the example of axisymmetric flow in a fluid conducting layer. In the first approach, an elastic flow regime (Terzaghi’s model) is considered for a layer with homogenized properties. In the second approach, the problem is formulated in terms of two unknown functions of pressure averaged over fracture cracks and pores. In the framework of the third approach, a two-scale flow model in which the fluid flow through pores is limited by the size of each porous block is proposed.  相似文献   

15.
The stability of a horizontal fluid saturated anisotropic porous layer heated from below and cooled from above is examined analytically when the solid and fluid phases are not in local thermal equilibrium. Darcy model with anisotropic permeability is employed to describe the flow and a two-field model is used for energy equation each representing the solid and fluid phases separately. The linear stability theory is implemented to compute the critical Rayleigh number and the corresponding wavenumber for the onset of convective motion. The effect of thermal non-equilibrium and anisotropy in both mechanical and thermal properties of the porous medium on the onset of convection is discussed. Besides, asymptotic analysis for both very small and large values of the interphase heat transfer coefficient is also presented. An excellent agreement is found between the exact and asymptotic solutions. Some known results, which correspond to thermal equilibrium and isotropic porous medium, are recovered in limiting cases.  相似文献   

16.
In this paper, a linear stability analysis is presented to trace the time evolution of an infinitesimal, two-dimensional disturbance imposed on the base flow of an electrically conducting fluid in a channel filled with a saturated porous medium under the influence of a transversely imposed magnetic field. An eigenvalue problem is obtained and solved numerically using the Chebyshev collocation spectral method. The critical Reynolds number Re c, the critical wave number α c and the critical wave speed c c are obtained for a wide range of the porous medium shape factor parameter S and Hartmann number H. It is found that an increase in the magnetic field intensity and a decrease in porous medium permeability have a stabilizing effect on the fluid flow.  相似文献   

17.
The mechanism of dispersion of substances dissolved in a fluid as it moves through a porous medium (filtration dispersion) is examined and it is noted that the dispersion is mainly determined by the repeated division and coalescence of the threads in the pores. Considering the analogy between the space-time nonuniformity of the fluid velocity field for laminar motion in a porous medium and for turbulent motion in a channel, and also bearing in mind the effectiveness of the finite-velocity diffusion model for calculating turbulent diffusion, it is recommended that filtration dispersion be described on the basis of that model. A system of equations describing the dispersion of substances in a porous medium formed as a result of the hexagonal and cubic close packing of spheres of the same diameter is obtained. The results of a numerical solution for the two-dimensional and three-dimensional steady-state problems are presented. Simplified systems of equations that considerably reduce the computation time are proposed.  相似文献   

18.
The effect of local thermal non-equilibrium on linear and non-linear thermal instability in a horizontal porous medium saturated by a nanofluid has been investigated analytically. The Brinkman Model has been used for porous medium, while nanofluid incorporates the effect of Brownian motion along with thermophoresis. A three-temperature model has been used for the effect of local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. The linear stability is based on normal mode technique, while for nonlinear analysis, a minimal representation of the truncated Fourier series analysis involving only two terms has been used. The critical conditions for the onset of convection and the heat and mass transfer across the porous layer have been obtained numerically.  相似文献   

19.
The onset of convection and its nonlinear regimes in a heated from below two-layer system consisting of a horizontal pure fluid layer and porous medium saturated by the same fluid is studied under the conditions of static gravitational field. The problem is solved numerically by the finite-difference method. The competition between the long-wave and short-wave convective modes at various ratios of the porous layer to the fluid layer thicknesses is analyzed. The data on the nature of convective motion excitation and flow structure transformation are obtained for the range of the Rayleigh numbers up to quintuple supercriticality. It has been found that in the case of a thick porous layer the steady-state convective regime occurring after the establishment of the mechanical equilibrium becomes unstable and gives way to the oscillatory regime at some value of the Rayleigh number. As the Rayleigh number grows further the oscillatory regime of convection is again replaced by the steady-state convective regime.  相似文献   

20.
The direct numerical simulation(DNS) is carried out for the incompressible viscous turbulent flows over an anisotropic porous wall. Effects of the anisotropic porous wall on turbulence modifications as well as on the turbulent drag reduction are investigated. The simulation is carried out at a friction Reynolds number of 180, which is based on the averaged friction velocity at the interface between the porous medium and the clear fluid domain. The depth of the porous layer ranges from 0.9 to 54 viscous units. The permeability in the spanwise direction is set to be lower than the other directions in the present simulation. The maximum drag reduction obtained is about 15.3% which occurs for a depth of 9 viscous units. The increasing of drag is addressed when the depth of the porous layer is more than 25 wall units. The thinner porous layer restricts the spanwise extension of the streamwise vortices which suppresses the bursting events near the wall. However, for the thicker porous layer, the wall-normal fluctuations are enhanced due to the weakening of the wall-blocking effect which can trigger strong turbulent structures near the wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号